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Abstract 
 

Since 802.11 wireless LANs are so widely used, it has become common for numerous access 
points (APs) to overlap in a region, where most of those APs are managed individually without 
any coordinated control. This pattern of wireless LAN usage is called the private OBSS 
(Overlapping Basic Service Set) environment in this paper.  Due to frame collisions across 
BSSs, each BSS in the private OBSS environment suffers severe performance degradation. 
This study approaches the problem from the perspective of congestion control rather than 
noise or collision resolution. The retry limit, one of the 802.11 attributes, could be used for 
traffic control in conjunction with TCP.  Reducing the retry limit causes early discard of a 
frame, and it has a similar effect of random early drops at a router, well known in the research 
area of congestion control. It makes the shared link less crowded with frames, and then the 
benefit of fewer collisions surpasses the penalty of less strict error recovery. As a result, the 
network-wide performance improves and so does the performance of each BSS eventually. 
Reducing the retry limit also has positive effects of merging TCP ACKs and reducing 
HOL-like blocking time at the AP. Extensive experiments have validated the idea that in the 
OBSS environment, reducing the retry limit provides better performance, which is contrary to 
the common wisdom. Since our strategy is basically to sacrifice error recovery for congestion 
control, it could yield side-effects in an environment where the cost of error recovery is high. 
Therefore, to be useful in general network and traffic environments, adaptability is required. 
To prove the feasibility of the adaptive scheme, a simple method to dynamically adjust the 
value of the retry limit has been proposed. Experiments have shown that this approach could 
provide comparable performance in unfriendly environments.  
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1. Introduction 

802.11 wireless LAN is so widely used that almost every home or office has its own Access 
Point (AP). Furthermore, a personal mobile AP also has been used for a tethering service to 
provide Internet access to personal devices. It is not unusual for dozens of APs to be detected 
at a campus, a mall or even a home, and those numbers will surely increase in the future. In our 
research, we call this pattern of wireless LANs the private OBSS (Overlapping Basic Service 
Set) environment. (More precise naming is overlapping private BSSs, but simply private 
OBSS is used because OBSS is already a knowledgeable term.) Here, private is the key word, 
which emphasizes that most BSSs are governed not by an administrator but by a user. The 
private AP is associated with only a few nodes or dedicated to a single node in many cases, and 
its range is usually very short. It mostly works in the DCF mode on a default channel without 
considering conflicts with other APs. Coordination from a global view of all BSSs is hard to 
achieve. In terms of network usage, most of the nodes in the private OBSS environment are 
used for instant information access from various servers and frequently connected to cloud 
computing services. In other words, traffics in the private OBSS environment consist mostly 
of download traffics from the AP to the node, and their round-trip times are usually very short.  

Collisions across BSSs could be solved by channel allocation. However, this study does 
not consider that approach for the following two reasons. First, in a private network 
environment, an optimal channel allocation through global coordination is hard to expect. It is 
a reasonable assumption that each BSS achieves limited improvement using only local 
knowledge. Second, since there are a limited number of orthogonal channels (for example, 
three in the 802.11 2.4 GHz band), the demand of a channel always exceeds the supply. In 
short, channel sharing among tens of BSSs is inevitable. 

The next issue, which this study focuses on, is how to efficiently share a link in the channel 
with other BSSs. The existing 802.11 standard mostly covers medium access in a BSS and 
interactions across BSSs are not considered in much detail. In overlapping wireless LANs new 
patterns of collisions across BSSs may occur and cause performance degradation. For example, 
an ACK at the receiver, normally considered collision-free, may collide with frames in other 
BSSs. Consequently, the performance at a BSS is degraded well below its proportional share 
of the link. 

In fact, the performance characteristics of the private OBSS environment are somewhat 
different from those of a highly noisy error-prone link.  For example, most 802.11 systems 
apply a data rate adaptation scheme, which decreases the data rate as the link quality gets 
worse. It has been an established rule for keeping the frame error rate stable. However, 
decreasing the data rate increases the transmission time of a frame, and hence the chance of 
collision for the frame may increase in uncoordinated accesses. In the private OBSS 
environment where only a few nodes are associated in a short range, the adaptation rule does 
not always improve performance [1].  The RTS/CTS mechanism has also been found not to be 
helpful in the OBSS environment because the overhead is high including collisions caused by 
RTS/CTS but the effect of collision avoidance across BSSs is limited without some extensions 
[2]. The retry limit, which is normally set high in an error-prone link, is also an interesting 
factor that shows performance anomalies in private OBSS environments. 

Most studies on wireless LANs consider frame collision a MAC problem. There have been 
some efforts to enhance the RTS/CTS mechanism to reduce collisions in the OBSS 
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environment [2-3]. However, in the private OBSS environment, inherently crowded networks 
of various personal devices with a lack of coordinated control, their effectiveness would be 
limited. In reality, frame collision is treated as a kind of link noise, and solutions for 
overcoming a poor link condition are simply applied. This causes performance anomalies 
because collision is a traffic factor rather than a physical factor. In other words, collisions in 
the OBSS environment should be addressed also by traffic control such as congestion control. 
There are few parameters for traffic control in wireless LANs, but it is believed that the retry 
limit could be used for congestion control at the link-level.  

Conventional wisdom is that the retry limit should be set high in error-prone environments 
because more attempts result in more successful transmission. However, in the OBSS 
environment where a link is usually crowded with the frames from numerous BSSs, this might 
not be true. Sometimes, giving up retransmission attempt early with a low retry limit value 
may reduce congestion on the link. Like the policy of random early drop in the congestion 
control area, it can be beneficial not only to all BSSs but eventually also to the corresponding 
BSS. 

The goal of this study is to introduce and validate the idea that in the OBSS environment 
reducing the link parameter of the retry limit does congestion control and improves 
performance. To achieve this goal, first, the effects of reducing the retry limit are figured out in 
detail. We have found that reducing the retry limit gives results of merging TCP ACKs and 
reducing HOL-like blocking time as well as invoking congestion control. Next, performance 
implications are checked through extensive simulation experiments. Since it is certain that 
reducing the retry limit does harm for error recovery, the retry limit should be used as a control 
knob for the trade-off between congestion control and error control. Finally, feasibility is 
addressed by introducing a simple adaptive scheme where the retry limit is adjusted to the link 
and traffic conditions. 

We believe that our approach is practical in the sense that it requires neither any 
modification of the current medium access control (i.e., DCF), nor any cooperative 
management among private BSSs. The solution is novel in that the key for the solution is 
congestion control and it is implemented by adjusting the retry limit, which is always 
considered a parameter for error recovery.  It is based on the observation that excessive error 
recovery might be ineffective in the OBSS environment. 

The rest of this paper is organized as follows. Section 2 describes related work. Section 3 
explains the effects of reducing the retry limit in private OBSS environments. Extensive 
performance evaluation has been made to validate the approach in section 4. Section 5 
introduces an adaptive scheme to adjust the retry limit depending on network conditions, 
which could give comparable performance in the environments unlike a private OBSS. Finally, 
section 6 concludes the study. 

2. Related Work 
Most of the existing studies on the OBSS have focused on channel allocation or selection 
problems.  Some of them have proposed a distributed channel selection method where each 
AP by itself decides which channel to use without coordination with other APs [4-5]. As 
mentioned above, considering current usage patterns of 802.11 where demands for a channel 
always exceed available channels, they could alleviate crowdedness but cannot solve the 
problem of congestion in essence. An adaptive power control for mitigating interference, for 
example [6], would have similar effects and limitations. Those studies could be used together 
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with our study in an orthogonal way. Recently, there have been some studies on overlapping 
BSSs other than channel selection [2,7], but most of them require modification of the current 
access control and/or coordinated management. They also focus on not DCF access but QoS 
services.  

The issues of overlapping BSSs have been one of the concerns of newly developing 802.11 
standards, such as 802.11ac [8]. For example, [9] proposed an enhanced RTS/CTS scheme to 
provide protection in non-primary channels shared with overlapping non-802.11ac BSSs. 
However, practical effectiveness of RTS/CTS has been questionable so they are usually not 
used. The new schemes would protect better against collision, but it would be hard to expect 
immediate performance improvement in the private OBSS environment where various legacy 
devices with uncoordinated management coexist. Collisions on RTS might still cause 
congestion problems. 

It is somewhat surprising that adaptive retry limits have not been much studied. It might be 
the reason that most agree that as the retry limit is set higher, the throughput increases though 
the delay may get longer. In fact, most recent studies focus on adapting the retry limit for 
real-time applications which are delay-sensitive [10-11]. 

Congestion control is usually considered not a functionality of the link layer but of the 
transport layer (TCP) or router. There are only a few studies on congestion control in 802.11 
networks, and almost all of them have addressed how to support QoS services in congested 
802.11 networks. For example, [12] proposed a method of throttling channel access among 
overlapping BSSs by differentiating channel access parameters such as the Arbitration 
Interframe Space Number (AIFN). To our best knowledge, there is no study on controlling 
congestion itself in 802.11 DCF networks. 

We believe that our solution is novel in that it addresses the problem purely from the issue 
of congestion. The other difference is that utilizing the existing link parameter, it requires no 
modification of the current medium access control (i.e. DCF) or any cooperative management 
among BSSs. 

3. The Effects of Reducing the Retry Limit 
In order to recover transmission failures, 802.11 provides a retransmission mechanism where 
transmissions are attempted until the network attribute of the retry limit is reached. In most 
wireless LANs, the retry limit is set to 7, which means transmissions are attempted up to 6 
times unless the transmission is successful. (Assuming the RTS threshold is not used, long 
retry limit and short retry limit are not distinguished in this study.) The conventional wisdom is 
that the retry limit should be set high in an error-prone environment because more attempts 
result in more successful transmission. However, in the OBSS environment where a link is 
usually crowded with the frames from numerous BSSs, this might not be true. Reducing the 
retry limit and ending retransmission attempts early may cause different network behaviors 
and performance in the OBSS environment from those in conventional non-OBSS 
environments. 

3.1 Early Congestion Control 
In the OBSS environment, transmission of a frame may fail with a high probability mostly due 
to collision with other frames. More crowded frames increase the failure rate. For each BSS, a 
retransmission attempt seems beneficial since it increases the overall chance of successful 
transmission. However, for BSSs sharing a link, it is questionable since it may aggravate the 
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crowdedness of the link, especially if another collision occurs. Although the exponential 
back-off scheme is applied to resolve crowdedness, a retransmission after back-off may not 
improve the success rate greatly because some degree of crowdedness always exists in the 
OBSS. Increased crowdedness increases the collision probability, and it decreases the 
transmission success rate. As a result, a retransmission attempt may have a negative effect on 
the transmission of not only the frames from other BSSs but also the succeeding frames from 
the BSS itself. In the OBSS environment, persistent retransmission attempts up to the fixed 
retry limit for error recovery at each BSS, which is applied in an ordinary 802.11 LAN, 
increase congestion, causing time and bandwidth to be wasted in vain. This is a typical 
congestion situation. 

To control this congestion, excessive retransmission attempts should be prohibited. A more 
fundamental solution is to avoid crowdedness in a link. A simple solution of reducing the retry 
limit can address both of them. A lower retry limit makes a frame discarded earlier, and thus 
excessive retransmission occurs less frequently. Dropping a frame invokes an action of TCP 
congestion control, and as a result, the amount of traffic at the link will be reduced. With a 
lower retry limit, earlier traffic reduction is possible and crowdedness could be alleviated 
earlier. 

This approach to link crowdedness is very similar to RED (Random Early Detection) [13] 
at a router. The two cases are different in that meaningless resource consumption is caused by 
packet drop at the router in RED but by frame collision at the link in our study. Both are the 
same in that congestion is alleviated by dropping a packet or a frame early. They are different 
again in that congestion is detected by monitoring the queue size at the router in RED but by 
monitoring the failure of retransmission over a certain limit in our study. 

Reducing the retry limit is certainly harmful for error recovery at the link layer. Since it is 
well known that end-to-end error recovery is more expensive than link-level recovery, 
performance suffers from frequent end-to-end recovery actions. However, the lower retry limit 
causes frames to be dropped earlier, and then invokes the data rate to decrease by TCP 
congestion control earlier. The less crowded link alleviates congestion and eventually reduces 
the link error rate due to fewer collisions. That is, a lower retry limit makes error recovery 
more expensive but less frequent. In other words, the retry limit could work as a control knob 
for the trade-off between congestion control and error control. 

In order to validate the idea, a simple experiment has been made. The experiment scenario 
is that two mobile nodes associated with different APs in the laboratory download an 
infinite-size file from the different servers at the wired network. The wireless environment is a 
typical OBSS where about 40 BSSs are actively detected. The result is shown in Fig. 1. As the 
retry limit gets lower, the aggregate throughput of the link, the sum of IPerf [14] throughputs at 
the two nodes, increases. The result seems to somewhat contradict the conventional wisdom 
that increasing the retry limit is better in a hostile wireless link. It could support our idea that 
reducing the retry limit for early congestion control may improve performance, in spite of 
increasing the recovery cost per error. More experiments with various network parameters 
including the round-trip time will be made in Chapter 4.  

3.2 TCP ACK Merging 
It is well known that most traffic in an 802.11 LAN is download traffic, and this is also true in 
the OBSS environment. The upload traffic from the mobile node to the AP usually contains 
only the response from TCP, without any application data. In this study it is called a TCP ACK 
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frame. The size of a TCP ACK frame is variable but is usually around 116 bytes, depending on 
the size of the TCP and 802.11 optional headers. 

 
Fig. 1.  Effect of Retry Limit on Performance (Measured Aggregate throughput) 

in A Simple OBSS Environment 
 

Although a small frame has a better chance of avoiding collisions than a long frame, it is 
certain that reducing the retry limit decreases the delivery success rate of a TCP ACK frame. 
In other words, it has the same risk of early drop as a TCP ACK frame. However, the effect of 
dropping a TCP ACK frame is somewhat different from that of a normal frame containing user 
data. The semantics of the TCP acknowledgement scheme are cumulative in default, which 
means that “ACK n” confirms the successful reception of  up to the (n-1)-th byte of data. Due 
to these semantics, loss of a TCP ACK i can be concealed by the delivery of a follow-up TCP 
ACK i+m for some positive number m. After the latter is delivered, the former is redundant, 
and thus recovery by retransmitting it is unnecessary. Since a TCP ACK frame only has a 
meaning of TCP acknowledgement, a drop of a TCP ACK frame could be also concealed by 
the successful transmission of the follow-up TCP ACK frame. In other words, the discarded 
TCP ACK frame is merged into the following TCP ACK frame. Owing to this merging effect, 
the penalty for early discard of the TCP ACK frame from the perspective of error control could 
be smaller than that of the data frame.  

Fig. 2 shows two frame transmission scenarios where the left is a default 802.11 case with 
a retry limit of 7 and the right is a case with a retry limit of 2. Both are typical cases which can 
be found in a real traffic trace captured using AirPcap [15]. In the default case, the TCP ACK 
frame (TCP ACK #2001) failed twice and succeeded the third time after exponential back-offs 
and retransmission. In the case when the retry limit is 2, the TCP ACK frame is simply 
discarded with no more retransmission attempt because the retry limit is already reached. 
However, the progress at TCP could be the same as in the default case. TCP at the sender can 
transmit multiple data segments within its effective window size, and thus the reception of 
TCP ACK #2001 is not necessary for transmission of DATA (seq#2001). Upon sending and 
receiving TCP ACK #3001 which implicitly merges #2001 into its cumulative acknowledge 
number, #3001, the existence of TCP ACK #2001 could be ignored. That is, early discards 
cause TCP ACK frames to be merged into one frame, which is called TCP ACK merging in 
this study.  

TCP ACK merging has two performance implications. First, it directly reduces link traffic. 
The wireless link of the 802.11 LAN is basically half-duplex, and a TCP ACK frame is a data 
frame in 802.11. Thus, there always exists a chance that a TCP ACK frame from a node 
collides with a data frame from the AP. Reducing the number of attempts to transmit TCP 
ACK frames is certainly a plus factor for network performance. TCP does not send an ACK on 
every receipt of a data segment. It is controlled in a complicated way by several rules of error, 
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flow and congestion control (for example, [16]). In the OBSS environment, a successful 
reception of a TCP segment may require several transmissions of 802.11 data frames, 
depending on the crowdedness. Therefore, the proportion of the TCP ACK frame in the link 
traffic would be less than half, in terms of the number of frames. From a sample trace with a 
default retry limit, it is found that about 30% of data frames are TCP ACK frames. Although 
its frame length is shorter than that of a TCP data frame, the overhead for medium access is the 
same. Therefore, TCP ACK merging may save considerable amount of bandwidth. 

 
Fig. 2.  A Scenario of TCP ACK Merging  

 
Second, however, TCP ACK merging also has a negative effect on performance, because it 

basically delays reporting the receiver status. It may delay the recovery of an error and also 
cost the opportunity to send more data faster. In an uncongested network, an immediate TCP 
ACK is preferred because the TCP sending rate can be increased with the pace of ACK 
reception. However, in the OBSS environment, which is basically a congested network, this 
immediateness might not always be helpful because more traffic means more collisions. 
Moreover, those delay effects would be tentative only until the following TCP ACK is 
delivered. Therefore, as long as there exists sufficient TCP data traffic, this minus factor does 
not overshadow the aforementioned benefit of the early drop. 

Finally, it is worthwhile to note that TCP ACK merging occurs situationally in proportion 
to the crowdedness of the link. In a light traffic OBSS, a TCP ACK frame is delivered to the 
AP with a high probability and TCP congestion control could increase the traffic rate 
immediately. In a heavy traffic OBSS, TCP ACK merging happens with a high probability and 
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increasing the traffic rate could be delayed. In conclusion, the delivery time of TCP ACKs, 
that is, the responsiveness at TCP, could be adjusted depending on the crowdedness of the 
physical link.  

3.3 Reduction of Head-Of-Line-like Blocking at the Access Point  
Suppose there are two nodes associated in a BSS, and both nodes are actively receiving 
download traffic. A frame should wait in the queue at the AP until transmission of the 
precedent frame is finished by successfully receiving an ACK frame or reaching the retry limit. 
In the OBSS environment where retransmission is very frequent, this waiting might be very 
long. If the precedent frame is destined for the same node as the destination of the waiting 
frame, waiting is acceptable because logical ordering matters. However, if the destinations are 
different, the inevitability of waiting is questionable because it is possible to try transmitting 
the frame waiting in the queue to the other destination. In particular, back-off time between 
retransmissions of the precedent frame, which usually increases exponentially, might be useful 
for this alternative transmission. From the perspective of the waiting frame, its transmission is 
blocked not by its own logical or physical constraints but by the lack of progress of the 
precedent frame. 

 
 
 
 
 
 
 
 
 

Fig. 3.  A Scenario of Had-Of-Line-like Blocking 
 

Since the situation is similar to Head-of-Line (HOL) blocking in network switching [17], it 
is called HOL-like blocking at the AP in this study. Fig. 3 shows a situation where HOL-like 
blocking occurs. Two nodes, N1 and N2 are associated with the AP and the traffic destined to 
them are buffered in the AP. Inside the AP, in order to remind the case of HOL-blocking, a 
logical switch is illustrated though the outgoing links are combined into the antenna. The 
frame at the head of the queue should wait until transmission of the outstanding frame is 
finished, although it is destined for a different node, N2. To our best knowledge, this kind of 
blocking at the AP has not been addressed directly in any 802.11 studies. It is probably 
because the outgoing link of the AP is physically unique and thus waiting is a matter of course. 
However, it is not nonsense that the AP has multiple logical links, logically concurrent 
transmission of multiple frames is possible, and then HOL-like blocking may happen. 

Setting aside the validity of HOL-like blocking for a while, first observe how reducing the 
retry limit affects transmission of the frame waiting in the queue. Since the precedent frame is 
discarded earlier than in the default case, the frame waits less than the default. On transmission, 
the frame may have a higher probability of collision than the default case because its value for 
the congestion window is initialized without accounting for the collision situation while 
transmitting the precedent frame. In summary, reducing the retry limit may reduce blocking 
time in the queue but may increase frame collisions due to not performing exponential 
back-offs.  

N1 

N2 

       ··
 

 

AP 

 

 

N1 

N2 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 6, June 2014                                                1889 

The issue is then whether this effect is beneficial or harmful in the OBSS environment. At 
first glance, it seems to be harmful because the OBSS environment is already crowded and 
hence sending a frame in the queue without back-offs is unlikely to succeed. It is also 
somewhat contradictory to our approach of improving performance by reducing crowdedness. 
However, it should be considered that congestion control is being performed below the surface 
by TCP. This is the difference from the case of linear back-offs or no back-offs. Assuming 
some of the APs do not have waiting frames in their queue, the collision probability of the 
frame sent after the early discarded frame might not be that high.  

For example, suppose there are two APs, A and B. Each AP sends a frame, the frames 
collide, and they both discard the frames with a low retry limit. If both APs have a frame in the 
queue, the frames sent next at each AP will collide with a higher probability than the default 
case where the precedent frames are retransmitted with exponential back-offs. However, if one 
of the APs does have a frame in the queue, the frame in the queue at the other AP may be sent 
with no higher collision probability than that of retransmitting frames in the default case. In 
this case, reduced waiting time can be a benefit. Here it is simply assumed that other APs in the 
OBSS environments have the same effects in both cases. Much more analytical work would be 
needed to determine the detailed effects of reducing waiting time. In this study its practical 
feasibility will be considered in the next section through simulation experiments. 

When considering the validity of the notion of HOL-like blocking, consider the session 
during which a frame is transmitted. In 802.11 it is basically atomic; it should not be 
preempted by transmission of other frames. Reducing the retry limit may cause early discard, 
which implies an abrupt stop of the transmission session. However, the data in the discarded 
frame is retransmitted by TCP, and thus the frame can be considered to be eventually 
transmitted again. In other words, a transmission session of a frame is interrupted, other 
frames may be transmitted, and the session is resumed. Assuming, for the extreme contrast, 
retransmission in the default case is always successful eventually, the difference is whether 
interleaving transmissions of frames happens or not. In summary, reducing the retry limit 
allows interleaving transmissions of frames, and as a result those out-of-order transmissions 
make it possible to overcome blocking caused by the order in the queue. This is similar to the 
logic for reducing HOL-blocking.  

There would be an argument that interleaving transmissions of multiple frames on the same 
physical link has no significant meaning; it only reduces back-off times from an exponential 
increase to either a linear increase or no increase. However, it is not always true that two nodes 
in a BSS have the same collision probability at reception although they use the same physical 
link. Also, the practical effect of exponential back-offs is questionable in the OBSS 
environment. Therefore, it is believed that the case is different from existing studies on 
back-off time. Finally, it is worthwhile to emphasize that this study does not advocate reducing 
the retry limit to alleviate HOL-like blocking. It simply explains an observation that 
performing congestion control at the link-level by reducing the retry limit may result in 
reduction of HOL-like blocking at the AP.  

4. Experimental Results 

4.1 Experiment Methods 
Since it is practically infeasible to build a controllable OBSS environment, performance 
evaluation has been done by simulation. OPNET [18] is selected as a simulation tool because it 
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gives more realistic results to real measurements than ns [19]. Ns results are consistent with 
OPNET results, but their values are much smaller than the corresponding measurement values. 

The basic experimental OBSS environment is as follows. Each BSS consists of one AP and 
one wireless node working in 54 Mbps 802.11g, and there are such 40 BSSs in the 
environment (in short notation, 40x1AP-1node-BSS is used later).  The number of BSSs, 40 is 
selected because about 40 BSSs are detected in our laboratory. Setting the number of BSSs is 
important because it could decide the level of congestion. It will be addressed as the degree of 
overlap in the experiment later. The average range of BSS is around 40 meters, which is 
reasonable considering obstacles in the real world. Each AP is connected with a dedicated 
server through the wired network, for which latency is adjustable. With respect to traffic, each 
wireless node downloads files from the dedicated server. In summary, the environment 
consists of 40 disjoint networks of (mobile node, AP, server). 

Before making performance analysis in detail, the validity of simulation results has been 
tested. That is, for some simplified OBSS environments, the simulation results have been 
compared to the real measurements. Table 1 shows the result of one of the test cases, where 
two (node, AP, server) networks are fully active but the other 38 BSSs are inactive. The 
measurement has been made in the two BSSs in the laboratory in the middle of the night, 
which means that other BSSs are mostly inactive in terms of wireless traffic. In OPNET the 
scenario with 40 BSSs is simulated where each node in two BSSs runs the file transfer 
application and all other nodes run with no application. 

 

Table 1. Comparison of Simulation Result and Measurement in a Simple OBSS Environment 
 

Environment Simulated 
Throughput 

Measured 
Throughput 

2 active BSSs and 38 inactive BSSs of 
802.11g  (54Mbps)  (9.23, 9.02) (8.12, 7.81)Mbps 

 

As mentioned in the related work (Chapter 2), it is believed that there has been no study on 
congestion control in DCF wireless LANs. Coordinated management methods such as 
bandwidth allocations are not applicable to private LANs. Other possible techniques for OBSS 
such as an adaptive data rate would be orthogonal to this study, and thus there would be no 
direct comparison. Therefore, performance evaluation is made through comparison not to 
other schemes but to the default retry limit. 

4.2 Effects of Adjusting Retry Limit on Performance 
First, the aggregate throughput of all the mobile nodes in the OBSS is analyzed with varying 
retry limits. The precise definition of the aggregate throughput is the sum of the goodput of the 
file download application at each mobile node, which indicates the real amount the OBSS 
system can provide to users effectively. Those redundant deliveries caused by either of 
link-level or transport-level retransmission should be excluded from the metric. The 
throughput is represented in the unit of bps (bit-per-second), which is more commonly used 
for link-level performance. 

To check its effect at the data sender (AP) and the data receiver (mobile node) separately, 
experiments have been made in two cases where the retry limit of each side is adjusted 
disjointly. One case is where the retry limit at the AP is varied from 2 to 7 while that of the 
mobile node is fixed with the default value, 7. The other is the case of adjusting the retry limit 
of the mobile node while that of the AP is fixed with the default, 7. In the case when the retry 
limit is 1, retransmission never occurs by definition. Some network drivers do not allow it in 
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reality. Hence the minimum value of the retry limit is set to 2. Fig. 4 shows the simulation 
results. 

In both cases, the aggregate throughput goes consistently higher as the retry limit goes 
lower. Reducing retry attempts at the data sender (i.e., reducing the retry limit of the AP) gives 
earlier effects than doing it at the receiver. Reducing the value of the retry limit consistently 
gives throughput improvement except the saturation from 3 to 2 at the AP. The reason for this 
saturation is because in case of the retry limit =3, giving up one more retry attempt decreases 
the success rate of frame delivery sufficiently to erase the benefit of early congestion control.  
For the retry limit ≥ 3, one more retry attempt does not significantly increase the success rate 
of frame deliver, and thus, skipping a retry attempt gives more gain than the cost of frame 
recovery. 

 
Fig. 4. Effect of Adjusting the Retry Limit on Link Throughput  

 
Reducing the retry limit only at the receiver (i.e., the node) ultimately gives almost the 

same performance gain. It could be explained that TCP ACK is also a data frame at the 
link-level, though its length is short, competing the half-duplex wireless channel with the data 
sender. In addition, due to the effect of TCP ACK merging, discarding a retry attempt of a TCP 
ACK frame gives nothing but the benefit of congestion control except delay in the response 
time, as long as a subsequent data arrives. There is no saturation even from 3 to 2. These 
results show that in a congested network environment like OBSS, it is an acceptable idea to 
sacrifice error control for congestion control.  

In order to evaluate the combined effects of reducing the retry limit at both sides, a total of 
36 cases have been tested varying the limit from 2 to 7, independently. Only the summaries of 
the results are explained here. The best case with respect to throughput is 3/2, where a case x/y 
means when the retry limit at the AP is x and that at the node is y. It gives 17.06 Mbps on 
average, which wins over 2/2 and 2/3 with very little margin. It could be interpreted that 
reducing the retry limit at the receiver is effective only when sufficient data is delivered. From 
now on, case 3/2 is used as the case representing when the link congestion control is applied. 

It is worthwhile to note that the important point is not the value of the best case, 3/2, but the 
fact that adjusting the retry limit for congestion control consistently gives better performance. 
3/2 is the best case only in the given OBSS environment where traffic is homogeneously local 
between the nodes and the servers in LANs (precisely, RTT is 10 msec). In a different network 
environment, a different combination would be the best case. However, the default case of 7/7 
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will not be the best case in the OBSS environments. The problem of determining the value of 
the retry limit in a different traffic environment will be addressed later.   

Next, the other important performance metric, the response time, is investigated. 
Specifically, when transferring small fixed-size files iteratively, their completion times are 
monitored in the same OBSS environment as above. We compare the average completion 
times for the default case and the link congestion control case while varying the file size. The 
results are shown in Fig. 5. For microscopic monitoring in a critical region, the file size is 
incremented by 1 Kbyte in the region from 40 to 45, while the interval is 10 K byte in the other 
region. 

 
Fig. 5. Effect of Reducing the Retry Limit on Response Time (File Transfer Time) 

 
The default case shows the typical behavior of a random access scheme, where the 

response time is very short in light traffic but it increases dramatically beyond some critical 
point, 43 Kbyte in this case. Below 43K bytes, 7/7 recovers most of frame failures by the 
link-level retransmission and those retransmitted frames do not make the link congested yet. 
Thus, the file transmission is done much faster than 3/2, which depends on retransmission at 
TCP. However, over 43K bytes, those retransmission frames of 7/7 make the link start to be 
congested. More collisions require more retransmissions, and then they yield severer 
congestion. It is a typical vicious cycle of congestion. Eventually, backlogging of the periodic 
traffic also gets started, and the response time is dramatically increased.  

On the other hand, 3/2 shows behavior similar to a controlled access scheme. The response 
time in light traffic is relatively high due to the control overhead, that is, expensive end-to-end 
error recovery in this case. However, it increases almost linearly with the file size regardless of 
the heaviness of traffic. Therefore, over 43K bytes, it gives shorter response time than 7/7. 
From the perspective of evaluating a congestion control scheme, the ratio of throughput (i.e., 
file size) to delay (i.e., file transfer time) is almost constant. It means that our method of link 
congestion control by simply reducing the retry limit can sustain a performance level even 
with congestion.  

The degree of overlap, as a measure of crowdedness, has also been investigated. Varying 
the number of BSSs in the environment, the aggregate throughputs of the default retry limit 
case and the reduced retry limit case are compared in Fig. 6. In the default retry limit case, the 
aggregate throughput is decreased as the number of BSSs is increased because more collisions 
cause more loss of time and bandwidth. In the reduced retry limit case, the slope of the 
decrease is less severe;  after some point the aggregate throughput keeps a level and or rather 
rises sometimes (# of BSSs = 40). It can be explained as follows. The individual throughout of 
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a BSS decreases as the number of BSSs increases. However, more BSSs mean more traffic 
sources, and more traffic sources often result in less idle time and waste of link bandwidth. The 
aggregate sum of the individual throughput at each traffic source may vary differently. In the 
default retry limit case, the losses due to more collisions are greater than the gains due to more 
traffic sources, but this might not always be true in the reduced retry limit case because 
collisions are controlled due to the early congestion control.  

Another interesting result is when the number of BSSs is 2, which is a typical non-OBSS 
environment. At first glance this example is anomalous because collisions would not occur 
frequently and the cost of recovering them at the link should be less expensive than that of 
recovering them at TCP. However, early congestion control has an effect even when there are 
only two traffic sources, which obviously compete for the link in an aggressive manner. The 
short RTT in the experiment environment also enables relatively fast error recovery by TCP, 
which is positive for the reduced retry limit case. In summary, reducing the retry limit always 
gives the same or better performance than the default retry limit case regardless of the degree 
of overlap, at least in the private OBSS environment assumed in this study. The performances 
in different environments will be addressed in section 5. 

 
Fig. 6.  Effect of the Degree of Overlap on Reducing the Retry Limit 

 
In order to check the effect on HOL-like blocking, an experiment has been designed as 

follows.  The basic experimental environment has been changed by adding a mobile node to 
each of arbitrarily chosen 10 BSSs, which is called an 1AP-2node BSS in contrast to the 
normal 1AP-1node BSS. Those 30 BSSs with a single node keep the link crowded and in the 
10 BSSs, two different nodes share the AP for download traffic. Applying the default 7/7 retry 
limit and the 3/2 retry limit for link congestion control, respectively, the aggregate throughputs 
of each group are compared as shown in Table 2.  

 
Table 2. Aggregate throughput (Average Throughput Per Node) in the OBSS Environment  

with 1AP-2Node BSSs for Examining the Effect on HOL-like Blocking 

Retry Limit 30 1AP-1Node 
BSS 

10 1AP-2Node 
BSS Total 

Default  
(7/7) 

7.84 Mbps 3.01 Mbps 11.24 Mbps 
(0.26 Mbps/node) (0.15 Mbps/node)  

Reduced 
 (3/2) 

7.62 Mbps 6.66 Mbps 15.21 Mbps 
(0.25 Mbps/node) (0.33 Mbps/node)  
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The result is somewhat surprising. Comparing the total throughputs of the link for each 
case, the reduced retry limit case gives better performance than the default case as expected 
from the effect on congestion control. However, almost all of the performance gain goes to 
1AP-2node BSSs; the nodes in the 1AP-1node BSS do not have performance improvement in 
the previous experiments. This seems to be because those APs processing two download 
traffic streams aggressively utilize the time slots and bandwidth that become available due to 
early drops. From the synergy effect with TCP congestion control, the higher rate traffic 
causes higher biased access for the slots.  

Looking at the result of the default case, those traffic-wise aggressive APs have only 
slightly higher throughput than the APs in the 1AP-1node BSS. This may be interpreted as 
follows. In the default case of full retransmission attempts with exponential back-offs, the 
average completion time of frame transmission (i.e., the service time at the AP) is not much 
shorter than the average inter-arrival time of each download stream. Thus, the number of 
attempts to access the link at the AP in the 1AP-2node BSS cannot be much higher than at the 
AP in the 1AP-1node BSS, although the traffic arrives from two sides and hence at twice the 
rate. Extra traffic had to wait in the queue at the AP.  

However, in the case of a 3/2 retry limit, those early drops not only make bandwidth 
available but also reduce the average completion time of frame transmission. Suppose 
completion time is shortened by up to the half of the average traffic inter-arrival time. Then all 
traffic from both streams at the AP in the 1AP-2node BSS can have transmission attempted. 
Assuming the success ratio of frame transmission is always the same, the AP in the 1AP-2node 
BSS can achieve double the throughput. Combined with TCP congestion control, the 
throughput difference becomes more than doubles in practice. Leaving out the appropriateness 
of the name of HOL-like blocking, it is certain that reducing the retry limit shortens average 
completion time of frame transmission, and then decreases waiting time in the queue. As a 
result, there are more chances to attempt to access the link, and its effect on performance could 
be positive as in the experiment. 

Again, it is worthwhile to emphasize that this study does not argue that a 1AP-2node BSS 
gives better performance than two 1AP-1node BSSs in the OBSS environment. In fact, it is 
believed that the 1AP-1node BSS is more common in the OBSS environment than the 
1AP-2node BSS. This implies that reducing HOL-like blocking is one of the effects of 
reducing the retry limit. It is decided that validation through extensive numerical analysis is 
desirable but outside of the scope of this paper. 

Finally, some experiments have been made in mixed OBSS environments where BSSs 
with the default retry limit and BSSs with the reduced retry limit coexist. Specifically, two 
cases have been simulated; one is the case where all 38 BSSs are working with the default 7/7 
retry limit but 2 BSSs have a reduced 3/2 retry limit, and the other is the reverse, where all 38 
BSSs are working with a 3/2 retry limit but 2 BSSs have the default 7/7 retry limit. All BSSs 
are 1AP-1Nodes.  

Table 3 shows the results. While 38 nodes perform retransmission attempts as usual, the 
efforts of congestion control at only two nodes become meaningless to the reduction of 
crowdedness and result in performance degradation. In the reverse case, there exists a 
significant extra bandwidth saved by early drop, but it is monopolized by the two nodes with the 
default retry limit; other nodes with a reduced retry limit have slight throughput improvement. 
In summary, the effectiveness of link-level congestion by reducing the retry limit requires 
consensus across the OBSS environment.  
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Table 3. Aggregate throughput (and Average Throughput per Node) in the OBSS Environment 
Mixed with the Default and Reduced Retry Limit 

Case Nodes with 
Default Retry Limit 

Nodes with 
Reduced Retry Limit Total 

38 Default (7/7) 
+ 2 Reduced (3/2) 

12.13 Mbps 0.30 Mbps 12.46 Mbps 
(0.32 Mbps/node) (0.15 Mbps/node)  

38 Reduced (3/2)  
+ 2 Default (7/7) 

3.33 Mbps 13.69 Mbps 17.02 Mbps 
(1.66 Mbps/node) (0.36 Mbps/node)  

5. A Simple Adaptive Scheme 

5.1 Experiments in Different Traffic/Network Environments 
The performance results shown in Section IV are based on the assumption that there is no extra 
bit error in the wireless link other than attenuation by distance and all traffic is downstream 
from the server, which is located a short distance away. Although this environment is mostly 
valid for current usage of a private 802.11 BSS, there could be different traffic or wireless link 
conditions. Therefore, the effect of reducing the retry limit should be investigated in different 
traffic/network environments. 

 
Fig. 7. Performance of Reduced Retry Limit in Various Environments 

 

First, the case of long distance traffic has been tested. Since reducing the retry limit is 
basically trading off the cost of error recovery for the cost of congestion, the amount of time 
for recovering an error directly affects its effectiveness. The simulation result with longer 
RTTs (round-trip time) is shown in Fig. 7-(a). As expected, the performance of the link 
congestion control case decreases as RTT increases.  

Next, the case of lossy links has been tested with the same purpose as above. Since setting 
the bit error rate of the link to an absolute value does not tell us how lossy the link is, we vary 
the link error condition by adding some constant to the BER of the default condition where the 
experiment in the previous section is made. Increasing those constants, the aggregate 
throughputs are as shown as in Fig. 7-(b). With the same reasoning as above, the bit error rate 
of the wireless link directly affects performance. Over some point of BER, the case of  
“ 5104 −×+  ” in the graph, the throughput of reducing the retry limit to 2/3 drops severely. It 
would be interpreted that our assumption on the OBSS environment that a frame error is 
usually due to collision rather than bit error is not true in that case. 
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Considering the current usage pattern of a wireless LAN, it is believed that long distance 
traffic and a heavily lossy link condition are rare. However, in order to be used in a general 
wireless network environment, the retry limit should be adjusted depending on the network 
and traffic conditions. 

4.2 A Simple Adaptive Adjustment of the Retry Limit 
Before describing our adaptive scheme in detail, the scope of the work should be described 
explicitly. The main theme of this paper is to introduce the idea that adjusting the value of the 
retry limit can be a key for congestion control in the OBSS environment. This is a notion that is 
relatively new and thus not validated yet. Therefore, on adaptability, it is believed that its 
feasibility should be addressed first. An optimal adaptive scheme, which might require a lot of 
analytical work, could be left to future studies after the idea is validated. In other words, our 
study of adaptability focuses on a simple proto-type solution rather than a complicated optimal 
solution. 

It is clear that an adjustment method should consider BER and RTT because our scheme 
improves performance by sacrificing the efficiency of error recovery, which is a major factor 
in error recovery cost. Most wireless drivers or network adaptors estimate various error rates 
to utilize them in adapting network parameters such as data rate. Therefore, the approximation 
of BER can be determined. However, in the case of RTT, there is no easy way to figure it out. 
It is basically infeasible with link-level information to determine how long the data inside a 
frame has been traveled from the source. There might be some cross-layering techniques such 
as looking deep inside a frame for the source IP address. However, it does not estimate RTT 
directly and hence requires another complicated estimation method. Since it is against our 
principle of a simple solution, estimating RTT is not attempted in this study. Instead, 
frequency and severity of error are considered.  

The following four variables are newly added in the OPNET wireless LAN library source 
program for adaptive adjustment of the retry limit. They have been easily computed from the 
existing code, and thus they could be calculable in real systems. 

 frame_size: the length of a frame to send in bytes 
 prob_cs_succ: the probability that the carrier sense attempt is successful 
 avg_trans_count: average number of transmissions for finishing  the process of 

sending a frame  
 ack_since_discard: the number of ACK frames received between discarding 

retransmission attempts 
frame_size is used to detect whether a frame is TCP ACK. prob_cs_succ is 

introduced to estimate the crowdedness of the link. It is recalculated whenever carrier sense is 
made. avg_trans_count is monitored in order to access the frame error rate of the link. This 
indicates the error-proneness of the link although it cannot distinguish if an error comes from 
collision or bit corruption. It is recalculated both when an ACK is received and when a frame is 
discarded.  

Finally, ack_since_discard is introduced to include the importance of error recovery in 
a decision. If ack_since_discard is n, this means that n frames are transmitted successfully 
since a frame is discarded. When n is large, discarding a frame without retrying transmission 
would be tolerable as in the case of random drop at a router. However, when n is very small, 
discarding a frame might cause a majority of frames to be lost and result in a pause in data 
exchange. Thus, recovering the frame would be more important than when n is large. 
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Conceptually, it is similar to the “count” variable in RED [13]. ack_since_discard is 
updated when an ACK is received and reset to zero when a frame is discarded.  

One subtlety in the scheme is when the value of the retry limit is adjusted.  One is when a 
frame is inserted into the transmission queue, and the other is whenever a transmission attempt 
including retransmission is made. Although the former is common in implementation, in our 
experiments using the OPNET simulator, adjustment is made on every transmission attempt. 

Using the above variables, a simple rule-based adjustment of the retry limit has been made 
as shown in Table 4. The actual code is added in the OPNET wireless LAN library 
(specifically, wlan_frame_discard()). Rule 1) is to utilize the effect of merging 
TCP_ACKs. A more precise condition would be equal to sizeof(TCP_ACK) but it is variable 
depending on the existence of the TCP optional header. The simpler condition is applied in the 
experiment. Rule 2) sets the base value of the retry limit to the link environment. The lower 
prob_cs_succ is, the higher the crowdedness of the link is. Thus, if prob_cs_succ is lower 
than a certain threshold (COBSS), the link is considered to be the OBSS and the retry limit is set 
to LOBSS, which is 3 as in the experiments of the previous section. If prob_cs_succ is higher 
than CNON-OBSS, congestion control at the link is not necessary. The retry limit has a default 
value of 7. When prob_cs_succ is in-between, the retry limit is set to LBASE, which is varied 
between  LOBSS  and  LDEFAULT  depending on the other conditions.  Those threshold values,  
COBSS for 0.3 and CNON-OBSSfor 0.4, are decided from measurements through experiments; they 
do not have an analytical basis. However, it is believed that they are acceptable to use for 
checking the feasibility of adaptation.  

 
Table 4. Adaptation Rules for Adjusting the Retry Limit 

 

 Condition Adjustment  
1) frame_size ≤  sizeof(TCP_ACK)  retrylimit = LOBSS

 a   
   
2) prob_cs_succ <  COBSS    

prob_cs_succ >  CNON-OBSS   
retrylimit = LOBSS 
retrylimit = LNON-OBSS 

 otherwise retrylimit = LBASE 
   
3) avg_trans_count >  AERROR  

if  prob_cs_succ <  COBSS  
if  prob_cs_succ >  CNON-OBSS 

 
 

 
retrylimit --  
increase  LBASE

  b 
 

4) ack_since_discard ≥  SHIGH  retrylimit --; decrease LBASE 
 ack_since_discard ≤  SLOW  retrylimit ++; increase LBASE 

a LOBSS : the constant value of the retry limit for the case of OBSS, 3; 
 LNON-OBSS: the constant value of the retry limit for the case of NON-OBSS, 7; 
 LBASE: the value of the retry limit for other cases, which is adjusted dynamically between LOBSS and 

LNON-OBSS, initially, LNON-OBSS; 
 COBSS: the threshold of crowdedness for the case of OBSS, 0.3; 
 CNON-OBSS: the threshold of crowdedness for the case of NON-OBSS, 0.4; 
 AERROR: the threshold of error-prone link condition in average number of transmission per frame, 2.5; 
 SHIGH: the high-end threshold of successively successful transmissions, 6; 
 SLOW: the low-end threshold of successively successful transmissions, 2. 
b LBASE is increased or decreased by 1 within [LOBSS .. LNON-OBSS] 
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Rule 3) is added to account for a lossy link. If avg_trans_count is higher than AERROR, the 
link is interpreted to be error-prone. If prob_cs_succ is lower than COBSS, the error comes 
mostly from collisions due to crowdedness and thus the retry limit is decreased for the earlier 
drop. When prob_cs_succ is higher than CNON-OBSS, the error comes not from collisions but 
from bit error. Since link lossiness is a sustaining property, LBASE, instead of the retry limit, is 
increased, which continuously affects transmission of the following frames. Finally, if 
ack_since_discard is greater than SHIGH, it means failure is tolerable. Thus, 
opportunistically, the retry limit is decreased. When ack_since_discard is less than SLOW, 
another transmission failure may cause bursty errors, which then may result in a severe drop in 
the data rate at TCP. The retry limit is increased.  LBASE is also increased or decreased in each 
case to maintain adaptation longer and to make the link more stable. Again those threshold 
values for AERROR, SHIGH and SLOW are decided by tuning the experiments. 

As shown in Fig. 8, in the default OBSS environment, the adaptive scheme cuts the 
performance improvement from 37% to 18%, in comparison to when the fixed retry limit is 
reduced to 3/2. However, the adaptive scheme gives consistent performance in other 
environments; they are similar to the case of the default retry limit. Rule 4) in Table IV 
increases LBASE when there are not enough successful frame deliveries between discarding a 
frame by reaching the retry limit. As a result, the retry limit in the adaptive scheme is usually 
higher than that of 3/2 fixed, 3. In the high error environments, the rate of successful frame 
delivery is low and LBASE becomes close to LNON-OBSS, which is the same as the default retry 
limit, 7. Therefore, they show similar retransmission behavior and performance. 

 
Fig. 8. Performance of a Simple Adaptive Scheme in Various Environments 

 
This somewhat conservative behavior of the adaptive scheme is intended in fact, to argue 

against the belief that reducing the retry limit is disastrous in non-OBSS environments and 
hence useless in general. It has been shown that reducing the retry limit does nothing but 
improvement with some simple adaptation rules. Changing those threshold values, the 
adaptive scheme may work in a high-gain/high-risk OBSS-oriented mode, which is believed 
to be more beneficial in the current usage of wireless LANs. Some deliberate adaptation 
methods would work effectively in both environments, which will be left for further work in 
this study.  
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6. Conclusion 
Performance degradation in the private OBSS environment has been addressed from the 
perspective of congestion control. By reducing the retry limit, which is known as an error 
control parameter, early random drops of packets occur in the wireless link and then TCP 
congestion control is activated. As a result, the link becomes less crowded and frame collisions 
could be reduced. Reducing the retry limit also gives positive effects of TCP ACK merging 
and a reduction of HOL-like blocking time at an AP. Extensive experiments have shown that it 
can consistently improve performance in environments where the OBSS consists of numerous 
small private BSSs and the traffic is mostly downloads to the mobile nodes from the server 
located at a short distance. In an environment where an end-to-end retransmission is much 
more expensive than a link-level retransmission, by reducing the retry limit, the cost of error 
recovery may overwhelm the benefit of congestion control. Therefore, a simple method of 
adjusting the retry limit to the network and traffic conditions has been proposed and tested. It 
would validate the adaptability of the idea.  

Although the idea has been analyzed in behavior analysis and validated in experiments, 
more comprehensive numerical analysis is required to completely verify its validity. An 
optimal adaptation scheme based on numerical analysis is a subject for future work. The study 
considers TCP only because using UDP the quality of service provided, that is, reliability is 
different depending on the value of the retry limit. If an application is less sensitive to error, 
the results of the study including the adaptive scheme could be applied to it with UDP.   
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