DOI QR코드

DOI QR Code

Energy-Efficient Transmission Bandwidth Adaptation in IEEE 802.11 WLANs

무선랜에서 에너지 효율적인 전송 대역폭 결정 기법

  • Hwang, Hwanwoong (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Yun, Ji-Hoon (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • Received : 2018.08.31
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

IEEE 802.11 wireless LANs support 20, 40, 80 and 160MHz bandwidth transmission. In general, the data rate increases as the transmission bandwidth increases. However, the transmission power spectral density decreases, which may lead to increasing packet errors and retransmissions. In this paper, we derive a mathematical model of energy consumption with consideration of various factors such as transmission bandwidth, packet error rate and data size. Based on the model, we design a scheme to adapt a transmission bandwidth for each frame transmission. The scheme estimates packet error rates for different bandwidth cases, updates the table of energy consumption and selects the best bandwidth for the next transmission. The simulation study with VoIP traffic shows the energy consumption of the scheme under various environments.

IEEE 802.11 무선랜은 20MHz부터 160MHz의 전송 대역폭을 지원한다. 일반적으로 전송 시 대역폭이 증가함에 따라 전송속도가 증가하지만, 동시에 단위 주파수당 전송파워가 낮아져 오류율이 증가하고 재전송을 유발할 수 있다. 본 논문에서는 이러한 현상이 전송 에너지 소비에 미치는 영향을 분석하기 위한 수학적 모델링을 수행한다. 그리고, 이를 바탕으로 전송 대역폭을 결정하는 기법을 제시한다. 제시된 기법은 기존 전송 결과를 기반으로 대역폭별 오류율을 추정하고 이를 바탕으로 대역폭별 에너지 소비 테이블을 업데이트 후 이들 간의 비교를 통해 최적 대역폭을 결정한다. VoIP 트래픽을 가정한 시뮬레이션을 통해 다양한 환경에서 제안한 기법의 에너지 소비 성능을 평가한다.

Keywords

References

  1. Matthew S. Gast, 802.11 ac: A survival guide, O'Reilly Media, Inc., 2013.
  2. D. Halperin et al., "Demystifying 802.11n Power Consumption," in Proc. USENIX HotPower, Oct. 2010.
  3. Y. Zeng et al., "A First Look at 802.11ac in Action: Energy Efficiency and Interference Characterization," in Proc. IFIP Networking, 2014. DOI:10.1109/IFIPNetworking.2014.6857103
  4. IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Standard 802.11, 1999.
  5. I. Pefkianakis et al., "CMES: Collaborative Energy Save for MIMO 802.11 Wireless Networks," in Proc. IEEE ICNP, Oct. 2013. DOI:10.1109/ICNP.2013.6733605
  6. C.-Y. Li et al., "Energy-based Rate Adaptation for 802.11n," in Proc. ACM MobiCom, Aug. 2012. DOI:10.1145/2348543.2348585
  7. R. Chandra et al., "A Case for Adapting Channel Width in Wireless Networks," ACM SIGCOMM Computer Communication Review (CCR), vol.38, no.4, pp. 135-146, 2008. DOI:10.1145/1402958.1402975
  8. F. Lu, et al., "SloMo: Downclocking WiFi Communication," in Proc. USENIX NSDI, 2013, pp. 255-258.
  9. F. Lu et al., "Enfold: Downclocking OFDM in WiFi," in Proc. ACM MobiCom, 2014, pp. 129-140. DOI:10.1145/2639108.2639123
  10. X. Zhang et al., "E-MiLi: Energy-minimizing Idle Listening in Wireless Networks," IEEE Trans. Mobile Comput., vol.11, no.9, pp. 1441-1454, 2012. DOI:10.1109/TMC.2012.112
  11. Cui et al., "Energy-constrained modulation optimization,"IEEE Trans. Wireless Commun., vol.4, no.5, pp. 2349-2360, 2005. DOI:10.1109/TWC.2005.853882
  12. Lee, Thomas H., The design of CMOS radiofrequency integrated circuits, Cambridge university press, 2004.
  13. Yamaji et al., "A temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range," IEEE J. Solid-State Circuits, vol.37, no.5, pp. 553-558, May 2002. DOI:10.1109/4.997847
  14. Qiao et al., "Goodput enhancement of IEEE 802.11 a wireless LAN via link adaptation," in Proc. ICC 2001, 2001. DOI:10.1109/ICC.2001.936939