A Fair MAC Algorithm under Capture Effect in IEEE 802.11 DCF -based WLANs

IEEE 802.11 무선랜에서 캡쳐 효과를 고려한 Fair MAC 알고리즘

  • Received : 2009.12.08
  • Accepted : 2010.06.27
  • Published : 2010.10.15

Abstract

Widespread deployment of infrastructure WLANs has made Wi-Fi an integral part of today's Internet access technology. Despite its crucial role in affecting end-to-end performance, past research has focused on MAC protocol enhancement, analysis, and simulation-based performance evaluation without sufficiently considering a misbehavior stemming from capture effect. It is well known that the capture effect occurs frequently in wireless environment and incurs throughput unfairness between nodes. In this paper, we propose a novel Fair MAC algorithm which achieves fairness even under physically unfair environment. While satisfying the fairness, the proposed algorithm maximizes the system throughput. Extensive simulation results show that the proposed Fair MAC algorithm substantially improves fairness without throughput reduction.

802.11 무선랜의 편리함으로 인해 무선랜의 광범위한 보급은 WiFi가 오늘날 인터넷 접근 기술에서 없어서는 안 될 부분이 되었다. 인터넷 접근 망의 연구는 단대단 성능에 지대한 영향을 미치는 중요한 역할을 함에도 불구하고 과거 연구는 캡쳐 효과(capture effect)로 기인한 오작동에 대한 충분한 고려없이 MAC 프로토콜의 성능향상, 분석 또는 시뮬레이션 평가를 수행해 왔다. 또한, 캡쳐 효과는 무선 환경에서 빈번하게 발생하고 있으며 노드 간에 불평등을 초래하는 것으로 알려져 왔다. 그래서, 우리는 그러한 불평등한 환경 하에서 형평성(fairness)을 제공할 수 있는 Fair MAC 알고리즘을 제안한다. 또한, 노드간에 형평성을 유지함과 동시에 시스템 전체 처리율(throughput)을 최대화되도록 한다. 시뮬레이션 결과는 제안된 Fair MAC 알고리즘이 처리율 감소 없이 형평성을 달성하는 것을 보여 준다.

Keywords

References

  1. Std. 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, ANSI/IEEE Std. 802.11, 1999.
  2. IEEE Std. 802.11e, Supplement to Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements, IEEE Std. 802.11e-2005, 2005.
  3. A. Kochut, A. Vasan, A. Shankar, and A. Agrawala, "Sniffing out the correct Physical Layer Capture model in 802.11b," in Proc. IEEE ICNP'04, 2004.
  4. S. Ganu, et. al., "Methods for restoring MAC layer fairness in IEEE 802.11 networks with physical layer capture," in Proc. ACM REALMAN'06, 2006.
  5. S. Han, T. Nandagopal, Y. Bejerano and H. Choi, "Analysis of Spatial Unfairness in Wireless LANs," in Proc. IEEE INFOCOM '09, 2009.
  6. J. Yee and H. Pezeshki-Esfahani, "Understanding wireless lan performance trade-offs," Communication system Design, Nov 2002.
  7. J. Boer and et al, "Wireless LAN With Enhanced Capture Provision," U.S. Patent 5987033, Nov. 1999.
  8. G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function," IEEE Journal on Selected Areas in Communications, vol.18, no.3, pp.535-547, Mar. 2000. https://doi.org/10.1109/49.840210
  9. F. Cali, M. Conti, and E. Gregori, "Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit," IEEE/ACM Transactions on Networking, vol.8, no.6, pp.785-799, Dec. 2000. https://doi.org/10.1109/90.893874
  10. D. Qiao and K. Shin, "Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF," in Proc. IEEE IWQoS'02, 2002.
  11. Yaling Yang, Jun Wang and Robin Kravets, "Distributed Optimal Contention Window Control for Elastic Traffic in Wireless LANs," in Proc. IEEE INFOCOM'05, 2005.
  12. Martin Heusse, Franck Rousseau, Romaric Guillier, Andrzej Duda, "Idle Sense: An Optimal Access Method for High Throughput and Fairness in Rate Diverse Wireless LANs," in Proc. ACM SIGCOMM' 05, 2005.
  13. H. Kim and J. C. Hou, "Improving protocol capacity with model based frame scheduling in IEEE 802.11-operated WLANs," in Proc. ACM MOBICOM' 03, 2003.
  14. C. Hu and J. C. Hou, "A novel Approach to Contention Control in IEEE 802.11e-Operated WLANs," in Proc. IEEE INFOCOM'07, 2007.
  15. G.F. Franklin, J.D. Powell, A. Emami-Naeini, "Feedback Control of Dynamic Systems," fourth ed., Addsion-Wesley.
  16. Chi-Tsong Chen, "Linear System Theory and Design," third ed., Oxford Univ. Press, 1999.
  17. L. Kleinrock, "Queueing Systems, Volume I: Theory," Wiley-Interscience, 1975.
  18. M. Heusse, F. Rousseu, G. Berger-Sabbatel, and A. Duda, "Performance Anomaly of 802.11b," in Proc. IEEE INFOCOM'03, 2003.
  19. B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, "Opportunistic Media Access for Multirate Ad Hoc Networks," in Proc. ACM MOBICOM' 02, 2002.
  20. I. Tinnirello and S. Choi, "Temporal Fairness Provisioning in Multi-Rate Contention-Based 802.11e WLANs," in Proc. IEEE WoWMoM'05, 2005.
  21. G. Bianchi and Ilenia Tinnirello, "Kalman Filter Estimation of the Number of Competing Terminals in an IEEE 802.11 Network," in Proc. IEEE INFOCOM'03, 2003.
  22. Eun-Chan Park and et al., "Analysis and design of the virtual rate control algorithm for stabilizing queues in TCP networks," Elsevier Computer Networks, vol.44, no.1, pp.17-41, Jan. 2004. https://doi.org/10.1016/S1389-1286(03)00321-9