• Title/Summary/Keyword: Wireless Communication Network

Search Result 3,182, Processing Time 0.03 seconds

Recent R&D Trends in Wireless Network Technology based on UAV-assisted FSO Technique (UAV 기반 FSO 무선통신 네트워크 기술 동향)

  • Yeo, C.I.;Heo, Y.S.;Ryu, J.H.;Park, S.W.;Kim, S.C.;Kang, H.S.;Lee, G.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.38-49
    • /
    • 2020
  • In recent years, the unmanned aerial vehicle (UAV) assisted mobile free space optical (FSO) communication technique has attracted considerable attention regarding its aims to provide improved communication conditions for fixed-to-fixed FSO network and promising fronthaul and backhaul solutions for 5G+ wireless networks. This can be attributed to its outstanding advantages such as fast deployment and flexible network configuration. The UAV-assisted mobile FSO system can be used to provide cost-effective internet services in rural and remote areas and in hotspot areas that are characterized by increased data traffic. Additionally, it can be used to provide secure communication services under emergency circumstances. In this report, we review recent R&D trends in wireless network technology employing the UAV-assisted mobile FSO technique and key technologies for mobile FSO wireless networks. Furthermore, we introduce drone-based mobile FSO terminals and control systems that we have developed.

Performance Evaluation of a Enhanced Network Coding Scheme using NS2 (NS2를 이용한 향상된 네트워크 코딩 기법의 성능평가)

  • Kim, Kwan-Woong;Kim, Yong-Kab;Kim, Byun-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2281-2287
    • /
    • 2013
  • Network Coding(NC) is a new paradigm for network communication. In network coding, intermediate nodes create new packets by algebraically combining ingress packets and send it to its neighbor node by broadcast manner. Network Coding has rapidly emerged as a major research area in information theory due to its wide applicability to communication through real networks. Network coding is expected to improve throughput and channel efficiency in the wireless multi-hop network. Prior researches have been carried out to employ network coding to wireless ad-hoc network. In our study, intermediate nodes identify one-hop bidirectional flows for network coding decision. We expect that the proposed scheme shall improve decoding success rate of network coded packet. From the simulation, the proposed network coding scheme achieved better performance in terms of coding gain and packet delivery rate than traditional network coding scheme.

Implementation of Wireless Multiple Integrated Laser Engagement System using ZigBee-based Persinal Area Network (ZigBee기반 개인영역망을 사용한 무선 다중 통합 레이저 교전 시스템의 구현)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • We realized a wireless multiple integrated laser engagement system composed of personal area network using Zigbee. The wireless laser detector had function of analog signal processor, decoder and wireless communication. However, it should consume low power and be small and light in order to be attached to a soldier's body. The decoder was realized in software to be small and light. We induced low power consumption as reducing the load of system using a narrow band optical filter. The fabricated wireless laser detector functioned well in optically noisy environment. Although the communication to the player unit through the wireless personal area network was dependent on the attachment place it was perfectly worked with transmission power of -40.2dBm or more.

Design of Wireless Underground Sensor System Using Magnetic Field Communication (자기장 통신을 이용한 무선 지중 센서 시스템 설계)

  • Kim, Sun-Hee;Lee, Seungjun;Hwang, Kyu-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.97-102
    • /
    • 2012
  • Recently, a wireless sensor network system has been receiving great attention for management of underground facilities. However, traditional wireless communication systems using microwaves in several hundred MHz ~ several GHz experience significant performance degradation in the non-uniform underground environment. In this research, in order to make a robust communication for the underground facilities, we propose a wireless underground sensor system based on magnetic field communication. In 3 meters underground environment including rocks, soils, water, etc.,, our proposed sensor network system has proved fully functional and met its performance specification.

Virtual Topology Control System for Evaluating Semi-infrastructured Wireless Community Networks (준-인프라 기반 무선 커뮤니티 네트워크 시험을 위한 가상 토폴로지 제어 시스템)

  • Kang, Nam-Hi;Kim, Young-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.275-281
    • /
    • 2012
  • Community network is a communication environment where heterogeneous devices can access and communicate with each other at any time and at any space to share information. To do so, mobile devices are required to be self-configured even in absence of communication infrastructures. Semi-infrastructured wireless ad-hoc network is a promising solution to meet with such a requirement. This paper proposes the VTC(virtual topology coordinator) system as an evaluation tool for examining network protocols that are intended to be deployed in the semi-infrastructured ad-hoc networks. VTC emulates multi-hops wireless network topology virtually using a mechanism of selective receiving MAC frame in a small area, where only a single hop communication is available. VTC system cannot consider all properties introduced in real wireless network, but do more wireless properties than verification through simulation.

A Model to Investigate the Security Challenges and Vulnerabilities of Cloud Computing Services in Wireless Networks

  • Desta Dana Data
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.107-114
    • /
    • 2023
  • The study provides the identification of vulnerabilities in the security issues by Wireless Network. To achieve it the research focus on packet flow analysis, end to end data communication, and the security challenges (Cybercrime, insider threat, attackers, hactivist, malware and Ransomware). To solve this I have used the systematic literature review mechanisms and demonstrative tool namely Wireshark network analyzer. The practical demonstration identifies the packet flow, packet length time, data flow statistics, end- to- end packet flow, reached and lost packets in the network and input/output packet statics graphs. Then, I have developed the proposed model that used to secure the Wireless network solution and prevention vulnerabilities of the network security challenges. And applying the model that used to investigate the security challenges and vulnerabilities of cloud computing services is used to fulfill the network security goals in Wireless network. Finally the research provides the model that investigate the security challenges and vulnerabilities of cloud computing services in wireless networks

Robust Key Agreement From Received Signal Strength in Stationary Wireless Networks

  • Zhang, Aiqing;Ye, Xinrong;Chen, Jianxin;Zhou, Liang;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2375-2393
    • /
    • 2016
  • Key agreement is paramount in secure wireless communications. A promising approach to address key agreement schemes is to extract secure keys from channel characteristics. However, because channels lack randomness, it is difficult for wireless networks with stationary communicating terminals to generate robust keys. In this paper, we propose a Robust Secure Key Agreement (RSKA) scheme from Received Signal Strength (RSS) in stationary wireless networks. In order to mitigate the asymmetry in RSS measurements for communicating parties, the sender and receiver normalize RSS measurements and quantize them into q-bit sequences. They then reshape bit sequences into new l-bit sequences. These bit sequences work as key sources. Rather than extracting the key from the key sources directly, the sender randomly generates a bit sequence as a key and hides it in a promise. This is created from a polynomial constructed on the sender's key source and key. The receiver recovers the key by reconstructing a polynomial from its key source and the promise. Our analysis shows that the shared key generated by our proposed RSKA scheme has features of high randomness and a high bit rate compared to traditional RSS-based key agreement schemes.

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.