• 제목/요약/키워드: Wire mesh

검색결과 222건 처리시간 0.026초

크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구 (An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh)

  • 이문환;송태협
    • 콘크리트학회논문집
    • /
    • 제19권5호
    • /
    • pp.569-575
    • /
    • 2007
  • 철근콘크리트 구조물의 수명 연장 및 기능 보완을 위하여 콘크리트 면의 보수를 실시할 경우 일반적으로 구조적 내력을 고려하지 않는다. 특히, 표면박락 등의 보수에는 단순하게 모르타르 도포만을 이용하여 보수가 완료되므로 별도의 구조적인 보강 성능을 발휘하지 않는다. 그러나 시공성의 향상 및 균열의 억제를 위하여 철망 등의 재료를 사용할 경우 일정부분 보강의 효과를 얻을 수 있을 것으로 예상되며, 특히, 수로 구조물과 같이 교각 간에 놓여지는 구조요소의 경우 하부면의 보수를 실시할 경우 휨 저항성의 증가를 기대할 수 있다. 따라서 본 연구에서는 크리프 철망에 의한 보수를 실시하고 보수 부위 및 보수 두께에 따른 보강 성능을 확인하고자 하였다. 이를 위하여 두께 150mm, 길이 3,000mm, 너비 600mm 슬래브를 제작하고, 상부 부분 보수, 상부 전면 보수, 하부 부분 보수, 하부 전면 보수, 크림프 철망 보강 유무 등 총 8개 실험 유형을 선택하고 이에 대한 휨 보강 성능 실험을 실시하였다. 분석 결과, 크림프 철망을 보강한 실험체에서 보수 재료의 두께가 증가할수록 항복하중 및 파괴하중은 높아지는 것으로 나타났으며, 동일 조건일 경우 하부면의 보수가 휨 하중에 대한 내력을 증가시킬 수 있는 것으로 나타났다. 또한, 휨 하중을 받는 구조물 중 부분 보수만을 실시할 경우 휨 보강 성능은 기대하기 어려운 것으로 나타났다. 결론적으로 크림프 철망에 의한 보수공법 적용 시 휨 저항성의 증가가 있는 것을 알 수 있었다.

스털링 기관용 재생기에 관한 기초 연구 (III) - 복합메쉬 철망을 축열재로 한 재생기의 전열 및 유동손실 특성 - (Basic Study on the Regenerator of Stilting Engine (III) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Combined Wire-mesh Matrix -)

  • 이시민;김태한
    • Journal of Biosystems Engineering
    • /
    • 제30권4호
    • /
    • pp.195-201
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, several kinds of combined wire screen meshes were used. The results are summarized as follows; The packed meshes with high mesh no. in the side of heater part of regenerator showed effective than the packed meshes with low mesh no. in the side of cooler part of regenerator. The temperature difference and pressure drop of the regenerator were not made by the specific surface area of wire screen meshes but by the minimum free-flow area to the total frontal area. Among the No. 150 single screen meshes, 200-60 combined meshes, the 200-150-100 combined meshes showed the highest in effectiveness.

하수관거 안전성 향상을 위한 보수 시스템 개발 (Development of Repair System for Drain Pipe to Enhance Safety)

  • 정지승;강원대
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.45-53
    • /
    • 2011
  • This study was performed to develop repair and reinforcing materials in sewage drain pipe by using 40% of CAC(Calcium Aluminate Cement) and 4% of Polymer Powder. Regarding reinforcing materials to enhance load-bearing capacity, polyester textile and wire mesh were adopted and then they were evaluated by the measurement of deflection and Stress-strain Relationship. Two types of drain pipe made by concrete and PE were considered as plain specimens and then loading test were performed after repaired by CAC mortar impregnated reinforcing materials. As the test results of the load-bearing test on both drain pipe, there was higher load-bearing capacity on the specimen adopted wire mesh but debonding of repair mortar was found due to stiffness of wire mesh. By the way, repair system using CAC mortar impregnated polyster textile without wire mesh showed satisfactory results including bonding and load-bearing capacity regardless substrate, so this repair system using by mixture of CAC mortar and polyster textile is suggested as the reasonable repairing method within this experimental scope.

조경용 포장 중간층에 사용가능한 PP섬유 보강 콘크리트의 물리·역학적 특성연구 (Physical and Mechanical Properties of PP Fiber Reinforced Concrete for Binder Course in Landscape Paving)

  • 전형순;이재근
    • 한국환경복원기술학회지
    • /
    • 제16권1호
    • /
    • pp.17-25
    • /
    • 2013
  • The mechanical properties appeared at the concrete mixed with Polypropylene fiber($1kg/m^3$, $3kg/m^3$, $5kg/m^3$) are compared with normal concrete and wire mesh one and evaluated. Achieved slump test to search effect that PP fiber gets to workability, even if the mixing amount of fiber increases, confirmed that slump value is no change almost. The no difference can be caused by hard mixture, but because of the big softness of fiber there is no effect greatly up to PP fiber mixing amount $5kg/m^3$ even with soft mixture. Compressive strengths and flexural strengths of the concretes with PP fiber and without the fiber are appeared almost alike. If examine load resistance ability by PP fiber mixing amount increase, it could know that the increase of fiber mixing amount improves load resistance ability and the toughness index is increased. While normal concrete is broken at the same time with crack, fiber mixed concrete stand in flexure load continuously after crack occurrence. In compare with wire mesh embeded concrete, wire mesh mixed concrete stands in some degree in flexure load by wire mesh crack occurrence and the test piece was broken at the same time. But, it could know that the PP fiber mixed concrete resist continuously to flexure load in bigger displacement.

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.

An Experimental Study on the Mechanical Properties and Rebound Ratios of SFRS with Silica Fume

  • Son, Young-Hyun;Chai, Won-Kyu
    • International Journal of Safety
    • /
    • 제8권2호
    • /
    • pp.20-25
    • /
    • 2009
  • In this study, an experiment in the field was performed to analyze the mechanical properties and the influence of steel fiber and silica fume on the rebound ratios of shotcrete. The experimental parameters which are the reinforcing methods (steel fiber, wire mesh), steel fiber contents (0.0%, 0.5%, 0.75%, 1.0%), silica fume contents (0.0%, 10.0%), layer thickness (60 mm, 80 mm, 100 mm), and the placing parts (sidewall, shoulder, crown) were chosen. From the mechanical test, it was found that the flexural strength and toughness is significantly improved by the steel fiber and/or silica fume. According to the results for the side wall in this test, the larger the fiber contents are in case of steel fiber reinforced shotcrete, the less the rebound ratios are within the range of 20-35%, compared to the wire mesh reinforced shotcrte. And also, the reduced rebound ratios were very larger in using steel fiber reinforced shotcrete with silica fume content of 10%, and these results are true of the shoulder and the crown. respectively.

Hydrocarbon Mist 기/액 분리를 위한 Wire-Mesh Type 시스템 국산화 기술개발 (The localization technical development of Wire-Mesh Type system for Hydrocarbon Mist Gas/Liquid separation)

  • 강성진;박치균;길성재;이만식
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 추계학술논문집 1부
    • /
    • pp.349-352
    • /
    • 2011
  • 본 연구를 통해 개발하고자 하는 Wire-Mesh Type Mist Eliminator는 탄화수소(Hydrocarbon)를 취급하는 석유화학 공정 내에서 Vapor 중에 존재하는 $10{\mu}m$ 이하크기의 미세한 액체 Mist를 분리하는데 사용되는 화학 공정플랜트 요소부품이다. 석유화학 공정에서 발생되는 $5{\mu}m$이하의 크기를 가지는 액체 Mist를 제거하기 위해서는 Stainless와 Polypropylene 재질이 혼합된 새로운 WMT Mist Eliminator 국산화 제품개발 시급하다. 실험을 통해 확보한 인자를 바탕으로 제작된 시제품의 분석결과 석유 화학공정에 이용이 가능한 것을 확인하고 성능이 우수함을 알 수 있었다.

  • PDF

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations

  • Kumar, Varinder;Patel, P.V.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.979-999
    • /
    • 2016
  • Stainless steel wire mesh (SSWM) is an alternative material for strengthening of structural elements similar to fiber reinforced polymer (FRP). Finite element (FE) method based Numerical investigation for evaluation of axial strength of SSWM strengthened plain cement concrete (PCC) and reinforced cement concrete (RCC) columns is presented in this paper. PCC columns of 200 mm diameter with height 400 mm, 800 mm and 1200 mm and RCC columns of diameter 200 mm with height of 1200 mm with different number of SSWM wraps are considered for study. The effect of concrete grade, height of column and number of wraps on axial strength is studied using finite element based software ABAQUS. The results of numerical simulation are compared with experimental study and design guidelines specified by ACI 440.2R-08 and CNR-DT 200/2004. As per numerical analysis, an increase in axial capacity of 15.69% to 153.95% and 52.39% to 109.06% is observed for PCC and RCC columns respectively with different number of SSWM wraps.

Analysis Method of Transmission Characterization for Multi-layered Composite Material Based on Homogenization Method

  • Hyun, Se-Young;Song, Yong-Ha;Jeoun, Young-Mi;Kim, Bong-Gyu
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.59-65
    • /
    • 2021
  • In this paper, the transmission characteristics of the multi-layered composite material with wire mesh and honeycomb core for aircraft applications have been analyzed with the proposed method. The proposed method converts the conductive wire mesh into effective layer, while for the dielectric honeycomb core, effective permittivity has been derived based on volume fraction with the proposed method. The proposed method has been verified through comparison with full-wave simulation and revealed excellent. In addition, the calculation time of the proposed method is a few order of magnitude faster in comparison with the full-wave simulation.