• 제목/요약/키워드: Wire Control

검색결과 929건 처리시간 0.025초

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

An experimental investigation on effect of elevated temperatures on bond strength between externally bonded CFRP and concrete

  • Attari, Behzad;Tavakkolizadeh, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.559-569
    • /
    • 2019
  • The bond strength between composite laminates and concrete is a key factor that controls the behavior of concrete members strengthened with fiber reinforced polymer (FRP) sheets, which can be affected by several parameters such as thermal stresses and surface preparation. This article presents the result of an experimental study on the bond strength between FRP sheets and concrete at ambient temperature after specimens had been exposed to elevated temperatures of up to $200^{\circ}C$. For this purpose, 30 specimens of plain concrete with dimensions of $150{\times}150{\times}350mm$ were prepared. Three different conventional surface preparation methods (sandblasting, wire brushing and hole drilling) were considered and compared with a new efficient method (fiber implantation). Deformation field during each experiment was monitored using particle image velocimetry. The results showed that, the specimens which were prepared by conventional surface preparation methods, preserved their bond integrity when exposed to temperature below glass transition temperature of epoxy resin (about $60^{\circ}C$). Beyond this temperature, the bond strength and stiffness decreased significantly (about 50%) in comparison with control specimens. However, the specimens prepared by the proposed method displayed higher bond strengths of up to 32% and 90% at $25^{\circ}C$ and $200^{\circ}C$, respectively.

농약살포시스템 이동을 위한 기구물 설치를 위한 대지 분석방법 (Earth Analysis Method for Installation of Equipment for Moving Pesticide Spraying System)

  • 부창진
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1152-1157
    • /
    • 2018
  • 논문에서는 밭농사에 적합하도록 설계된 와이어 기반 농약살포장비의 이동을 위한 구조물 설치 위치의 어려움을 해결하고자 한다. 이를 위해 간접적으로 대지구조를 파악할 수 있는 대지저항률 측정방법과 분석기술을 적용한다. 선정된 밭농사 지역에 일정 간격의 전극을 현장에 설치하고 내장형 제어보드에 다수의 스위치를 구동시켜 대지저항률 데이터를 자동 취득한다. 그리고 2차원 영상복원 알고리즘을 사용하여 대지분석을 수행하고 그 결과를 통해 실제 구조물 타설에 적합한 최적지점을 선정하고자 한다.

Factors affecting modulation transfer function measurements in cone-beam computed tomographic images

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • 제49권2호
    • /
    • pp.131-137
    • /
    • 2019
  • Purpose: This study was designed to investigate the effects of voxel size, the oversampling technique, and the direction and area of measurement on modulation transfer function (MTF) values to identify the optimal method of MTF measurement. Materials and Methods: Images of the wire inserts of the SedentexCT IQ phantom were acquired, and MTF values were calculated under different conditions(voxel size of 0.1, 0.2, and 0.3 mm; 5 oversampling techniques; simulated pixel location errors; and different directions and areas of measurement). The differences in the MTF values across various conditions were evaluated. Results: The MTF 10 values showed smaller standard deviations than the MTF 50 values. Stable and accurate MTF values were obtained in the 0.1-mm voxel images. In the 0.3-mm voxel images, oversampling techniques of 11 lines or more did not show significant differences in MTF values depending on the presence of simulated location errors. MTF 10 values showed significant differences according to the direction and area of the measurement. Conclusion: To measure more accurate and stable MTF values, it is better to measure MTF 10 values in small-voxel images. In large-voxel images, the proper oversampling technique is required. MTF values from the radial and tangential directions may be different, and MTF values vary depending on the measured area.

폴리머 격자 보강재를 이용한 3D 프린팅 시멘트계 외장재의 구조 거동 분석 (Structural Behavior Analysis of Polymer Lattice Reinforced 3D Printing Cementitious Cladding)

  • 김학범;박민재;주영규
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.3-10
    • /
    • 2018
  • Cladding that finishes the exterior of a building could enhance the value of the building, and shape control is an important factor. With the recent development of 3D printing, cementitious claddings were printed by 3D printer in China, U.S.A and elsewhere. On the other hand, the structural safety of the exterior panel should be examined, as casualties occur when the exterior panel fails due to typhoon or impact. Cement-based cladding is reinforced by wire mesh to improve safety. Introducing 3D printing composite system with polymer and cement, makes it possible to produce claddings fast and accurate. Prior to the development of 3D printing cementitious cladding, the major parameters influencing the optimal shape were identified based on structural performance. The wind load, joint, and bond behavior between polymer and cement were considered. Polymer laminate shape, order, and thickness were variables, and finite element analysis was performed.

Thermomechanical and electrical resistance characteristics of superfine NiTi shape memory alloy wires

  • Qian, Hui;Yang, Boheng;Ren, Yonglin;Wang, Rende
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.183-193
    • /
    • 2022
  • Structural health monitoring and structural vibration control are multidisciplinary and frontier research directions of civil engineering. As intelligent materials that integrate sensing and actuation capabilities, shape memory alloys (SMAs) exhibit multiple excellent characteristics, such as shape memory effect, superelasticity, corrosion resistance, fatigue resistance, and high energy density. Moreover, SMAs possess excellent resistance sensing properties and large deformation ability. Superfine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system. In this study, the mechanical properties and electrical resistance sensing characteristics of superfine NiTi SMA wires were experimentally investigated. The mechanical parameters such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio were analyzed at different training strain amplitudes and numbers of loading-unloading cycles. The results demonstrate that the detwinning process shortened with increasing training amplitude, while austenitic mechanical properties were not affected. In addition, superfine SMA wires showed good strain-resistance linear correlation, and the loading rate had little effect on their mechanical properties and electrical resistance sensing characteristics. This study aims to provide an experimental basis for the application of superfine SMA wires in engineering.

형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발 (Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp)

  • 신민기;조장호;우현수;김기영
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

BSCCO Magnet 제작 및 영구전류모드에서의 전류 보상 운전 특성 (Fabrication of a BSCCO Magnet and its Operating Characteristics of Current Compensation in Persistent Current Mode)

  • 조현철;장기성;장재영;김형준;정윤도;윤용수;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.56-60
    • /
    • 2010
  • Recently, many researches have been carried out for a high temperature superconducting (HTS) magnet which is advantageous in high critical current density and critical temperature. In HTS magnet, however, critical current is decreased by perpendicular magnetic field and persistent current is hard to maintain due to a low index value and high joint resistance compared with low temperature superconducting (LTS) magnet. In this paper, the HTS magnet using BSCCO wire was simulated through finite element method (FEM) and manufactured. we experimentally investigated operating characteristics of the compensating mode of the HTS magnet for current decay and made a comparison between persistent current mode and compensating mode. A feedback control unit was used to sustain current within specified ranges with defined upper and lower limits.

요부 안정화를 위한 복대형 입는 로봇 개발 (Development of Brace-type Wearable Robot for Lumbar Stabilization)

  • 김주완;심재훈;김기원;정선근;박재흥
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2023
  • An abdominal brace is a recommended treatment for patients with lumbar spinal disorders. However, due to the nature of the static brace, it uniformly compresses the lumbar region, which can weaken the lumbar muscles or create a psychological dependence that worsens the condition of the spine when worn for an extended period of time. Due to these issues, doctors limit the wearing time when prescribing it to patients. In this paper, we propose a device that can dynamically provide abdominal pressure and support according to the lumbar motion. The proposed device is a wearable robot in the form of a brace, with actuators and a driving unit mounted on the brace. To enhance wearability and reduce the weight of the device, worm gears actuator and a multi-pulley mechanism were adopted. Based on the spinal motion of the wearer measured by the Inertia measurement unit sensors, the drives wire by driving pulley, which provide tension to the multi-pulley mechanism on both sides, dynamically tightening or loosening the device. Finally, the device can dynamically provide abdominal pressure and support. We describe the hardware and system configuration of the device and demonstrate its potential through basic control experiments.

보조말뚝의 충격하중에 의한 PHC말뚝의 파손유형 고찰 (Study on the Fractures Types of PHC Pile by Impact Load of Follower)

  • 서동남;최상호;김진식;김민갑;이동현;조성준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.144-145
    • /
    • 2021
  • This study analyzed the cases of cracks in piles due to the use of followers under construction conditions where water exists inside the piles, and confirmed whether the piles were cracked through a field test simulating the construction conditions in which water pressure inside the piles was generated by a hammer. According to the construction case, under the construction condition where the pile length is 20% to 30% shorter than the drilled length, about 80% cracks occur, so there is a high possibility of cracking due to water inside the pile. A field test was conducted to confirm the type of pile failure due to hammer under the construction condition in which water exists inside the pile. The pile head was not destroyed by the compressive load, and one or more longitudinal cracks occurred along the PC steel wire. The closed end pile generates water pressure by hammer. the follower and cushion(compression plywood) must be drilled at least 0.4D. It is expected that improved quality control will be possible as the water pressure inside the pile is reduced.

  • PDF