• Title/Summary/Keyword: Winding function approach

Search Result 5, Processing Time 0.032 seconds

A Heuristic Scheduling Algorithm for Transformer Winding Process with Non-identical Parallel Machines (이종병렬기계로 구성된 변압기 권선공정의 생산일정계획)

  • 박창권;장길상;이동현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • This paper proposes a heuristic scheduling algorithm to satisfy the customer's due date in the production process under make to order environment. The goal is to achieve the machine scheduling in the transformer winding process, in which consists of parallel machines with different machine performances. The winding is important production process in the transformer manufacturing company. The efficiency of the winding machines is different according to the voltage capacity and the winding type. This paper introduces a heuristic approach in the transformer winding process where the objective function is to minimize the total tardiness of jobs over due dates. The numerical experiment is illustrated to evaluate the performance.

Inductances Evaluation of a Squirrel-Cage Induction Motor with Curved Dynamic Eccentricity

  • Lv, Qiang;Bao, Xiaohua;He, Yigang;Fang, Yong;Cheng, Xiaowei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1623-1631
    • /
    • 2014
  • Eccentricity faults more or less exist in all rotating electrical machines. This paper establishes a more precise model of dynamic eccentricity (DE) in electrical machines named as curved dynamic eccentricity. It is a kind of axial unequal eccentricity which has not been investigated in detail so far but occurs in large electrical machines. The inductances of a large three-phase squirrel-cage induction machine (SCIM) under different levels of curved DE conditions are evaluated using winding function approach (WFA). These inductances include the stator self and mutual inductances, rotor self and mutual inductances, and mutual inductances between stator phases and rotor loops. A comparison is made between the calculation results under curved DE and the corresponding pure DE conditions. It indicates that the eccentricity condition will be more terrible than the monitored eccentricity based on the conventional pure DE model.

Design of linear synchronous motor with slotted structure (치-슬롯을 갖는 직선형 동기 전동기의 설계 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Jang-Young;Park, Ji-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.197-199
    • /
    • 2006
  • This paper presents a analytical field solutions for the general class of Linear Brushless DC(LBLDC) motors with PM mover and 3-phase winding stator. In our magnetic field analysis, we have adopted an approach which can treat both magnetized material and winding from the each field analysis by magnetic vector potential considering 2-Dimensional slot modeling. Therefore, we give accurate analytical formulas and object function for design and parameters estimation by its magnetic field.

  • PDF

Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate (열 유입률을 고려한 자계-열계 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Moon, Hee-Gon;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector (전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식)

  • Kwak, YunChang;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.