• 제목/요약/키워드: Wind sensor

검색결과 267건 처리시간 0.028초

압전진동자를 이용한 초음파형 풍향풍속계 (The Ultrasonic Type Wind Sensor with Piezoelectric Actuator)

  • 이선길;문영순;최시영
    • 센서학회지
    • /
    • 제22권4호
    • /
    • pp.292-296
    • /
    • 2013
  • The ultrasonic wind sensor that pass through the air, beating the delivery of ultrasonic wind speed increases or decreases by the physical characteristics of the wind speed and the direction of the sensor, the transmission and reception of ultrasonic time difference measured by a two-axis vector wind and wind speed measured by calculating a device that converts the digital signal is Anemometer and wind direction meteorological facilities management, management of the ship sail used for various purposes, including, but used the existing 3-cup (mechanical) anemometer wind rotor caused by mechanical wear parts replacement due to the short-term, the reliability of the product is low, parts replacement, and according to the characteristics caused the car, there is a problem in high maintenance costs. In addition, because the bearings use of the marine environment and the cryogenic environment was constrained. In this study, the excellent long-term reliability, using ultrasonic-type environment that is not constrained to produce wind anemometer located $90^{\circ}$ conformal road using four piezoelectric sensors were fabricated structures, the piezoelectric oscillator circuit produces a rash and receiving transmit and receive speeds the car through the two-axis vector calculation to measure wind velocity processor firmware programming, and its characteristics were tested.

MICROPHONE-BASED WIND VELOCITY SENSORS AND THEIR APPLICATION TO INTERACTIVE ANIMATION

  • Kanno, Ken-ichi;Chiba, Norishige
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.596-600
    • /
    • 2009
  • We are developing a simple low-cost wind velocity sensor based on small microphones. The sensor system consists of 4 microphones covered with specially shaped wind screens, 4 pre-amplifiers that respond to low frequency, and a commercial sound interface with multi channel inputs. In this paper, we first present the principle of the sensor, i.e., technique to successfully suppress the influence of external noise existing in the environment in order to determine the wind velocity and the wind direction from the output from a microphone. Then, we present an application for generating realistic motions of a virtual tree swaying in real wind. Although the current sensor outputs significant leaps in a measured sequence of directions, the interactive animations demonstrate that it is usable for such applications, if we could reduce the leaps to some degree.

  • PDF

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

풍력터빈 블레이드 상태 감시용 광섬유격자 센서시스템 (FBG sensor system for condition monitoring of wind turbine blades)

  • 김대길;김현진;송민호
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.75-82
    • /
    • 2013
  • We propose a fiber grating sensor system for condition monitoring of large scale wind turbine blades. For the feasibility test of the proposed sensor system, a down-scaled wind turbine has been constructed and experimented. Fiber grating sensors were attached on a blade surface for distributed strain and temperature measurements. An optical rotary joint was used to transmit optical signals between the FBG sensor array and the signal processing unit. Instead of broadband light source, we used a wavelength-swept fiber laser to obtain high output power density. A spectrometer demodulation is used to alleviate the nonlinear wavelength tuning problem of the laser source. With the proposed sensor system we could measure dynamic strain and temperature profiles at multi-positions of rotating wind turbine blades.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

풍력발전기 상태 모니터링을 위한 ZigBee 무선 센서노드 및 네트워크 (ZigBee Wireless Sensor Nodes and Network For Wind Turbine Condition Monitoring)

  • 김현호;안성범;최상진;반재경
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.4186-4192
    • /
    • 2012
  • 풍력발전기가 경제적, 환경적 요인에 따라 대형화, 해상화 되고 있어 접근이 어렵고, 부품 및 유지보수 비용이 증가하고 있다. 풍력발전기 상태 모니터링을 통하여 고장 요소를 최소화 하고, 고장 시 2차 사고를 예방하여 운영유지 및 보수비용을 낮추고 신뢰성을 증가시켜야 한다. 본 논문에서는 IEC 61400-25-2에서 표준으로 추진하는 풍력발전기 모니터링에 적합한 센서 중 실제 풍력발전기 상태 모니터링에 필요한 온도, 습도, 전압, 전류, 풍향, 풍속 센서를 ZigBee 무선 통신 소자와 결합하여 무선 센서노드를 구성하고 이를 이용한 간단한 네트워크를 통하여 센서 신호를 전송한다. 각 무선 센서노드에서 전송되는 신호는 라우터를 통하여 중앙 모니터링 터미널에 전송한다. 또한 LabVIEW로 신호를 수집 및 처리하고, TCP/IP 통신 변환을 통해 인터넷 환경이면 언제 어디서든지 사용자 및 관리자가 모니터링 할 수 있도록 한다.

Interpolation을 이용한 3-CUP Anemometer의 성능 개선에 관한 연구 (The Study of Performance Improvement of the 3-Cup Anemometer using Interpolation Methods)

  • 이성신;정택식;구법모
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.672-675
    • /
    • 2001
  • 본 논문에서 Interpolation Methods를 이용하여 보다 정화한 풍속을 계산하는 방법과 보다 정확한 풍향을 계산하기 위하여 Interpolation Polynomial을 찾는 방법을 제안하였고, 이렇게 제안된 방법을 이용하여 3-Cup Anemometer의 성능을 개선하였다. 우리는 풍향, 풍속의 관측을 위해 기구부는 3-cup Type Anemometer로, 전자부는 Photo Sensor를 이용하여 구현하였다. 정확한 풍속과 풍향의 측정을 위해서는 시스템의 메모리 한계 및 성능을 고려한 시스템 설계와 8비트 Gray Code Film으로 256(= 2$^{8}$ )개의 각도 Data로 360$^{\circ}$를 표현하는 방법이다.

  • PDF

기상계측시스템을 위한 풍향.풍속모듈 및 DSP 센서 인터페이스시스템 설계 (The Design of a Wind Speed & Direction Module and a DSP Sensor Interface System for the Meteorological System)

  • 송도호;주재훈;옥기태;김상갑;최중경
    • 한국정보통신학회논문지
    • /
    • 제11권8호
    • /
    • pp.1478-1485
    • /
    • 2007
  • 본 논문에서는 풍향 풍속 계측모듈 및 DSP 센서인터페이스 회로 보드를 포함하는 기상계측 시스템을 제안한다. 이 DSP 시스템은 풍향풍속모듈, 대기압센서, 대기 온도 센서의 정보를 받아들이고, 빠르게 처리하여 PC 모니터링 시스템에 전달한다. 특히 풍향 풍속 모듈과 DSP 하드웨어는 직접 설계하여 적용한다. 풍향 풍속 모듈은 바람에 관한 벡터적 정보를 얻기 위해 4개의 박막형 RTD(Resistive Temperature Detectors) 저항센서를 히팅 코일에 의해 일정하게 가열된 원기둥 모양의 지지 표면에 벡터적으로 배치하는 구조를 채택한다. 이 구조를 채택한 계측 모듈은 진동, 습기, 부식 등에 강인하면서 정확한 계측을 가능케 한다. 센서 신호처리 회로는 TI사의 고속 DSP인 TMS320F2812 사용한다. 적용된 풍향 풍속 모듈을 통해 얻어진 데이터와 DSP 인터페이스 회로보드의 빠른 데이터 처리를 통해 저렴한 기상계측시스템을 구성 할 수 있었다.

Fault Tolerant Control of Wind Turbine with Sensor and Actuator Faults

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.28-37
    • /
    • 2013
  • This paper presents a fault-tolerant control technique for wind turbine systems with sensor and actuator faults. The control objective is to maximize power production and minimize turbine loads by calculating a desired pitch angle within their limits. Any fault with a sensor and actuator can cause significant error in the pitch position of the corresponding blade. This problem may result in insufficient torque such that the power reference cannot be achieved. In this paper, a fault-tolerant control technique using a robust dynamic inversion observer and control allocation is employed to achieve successful pitch control despite these faults in the sensor and actuator. The observer based detection method is used to detect and isolate sensor faults by checking whether errors are larger than threshold values. In addition, the control allocation technique is adopted to tolerate actuator fault. Control allocation is one of the most commonly used fault-tolerant control techniques, especially for over-actuated systems. Further, the control allocation method can be used to achieve the power reference even in the event of blade actuator fault by redistributing the lost torque due to erroneous pitch position into non-faulty blade actuators. The effectiveness of the proposed method is demonstrated through simulations with a benchmark model of the wind turbine.

Sensor selection approach for damage identification based on response sensitivity

  • Wang, Juan;Yang, Qing-Shan
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.53-68
    • /
    • 2017
  • The response sensitivity method in time domain has been applied extensively for damage identification. In this paper, the relationship between the error of damage identification and the sensitivity matrix is investigated through perturbation analysis. An index is defined according to the perturbation amplify effect and an optimal sensor placement method is proposed based on the minimization of that index. A sequential sub-optimal algorithm is presented which results in consistently good location selection. Numerical simulations with a two-dimensional high truss structure are conducted to validate the proposed method. Results reveal that the damage identification using the optimal sensor placement determined by the proposed method can identify multiple damages of the structure more accurately.