Browse > Article
http://dx.doi.org/10.3938/jkps.73.1889

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks  

Yang, Chan Ho (Department of Electrical engineering, Hanyang University)
Song, Yewon (Department of Electrical engineering, Hanyang University)
Jhun, Jeongpil (Department of Electrical engineering, Hanyang University)
Hwang, Won Seop (Department of Electrical engineering, Hanyang University)
Hong, Seong Do (Department of Electrical engineering, Hanyang University)
Woo, Sang Bum (Department of Electrical engineering, Hanyang University)
Sung, Tae Hyun (Department of Electrical engineering, Hanyang University)
Jeong, Sin Woo (Department of Mechanical engineering, Hanyang University)
Yoo, Hong Hee (Department of Mechanical engineering, Hanyang University)
Abstract
An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).
Keywords
Energy conversion; Energy harvesting; Piezoelectric materials; Wind; Wireless sensor networks;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. M. Na, H. S. Lee, T. H. Kang, J. K. Park and T. G. Park, Korean J. Mater. Res. 25, 10 (2015).
2 D. A. Wang and N. Z. Liu, Sens. Actuators A: Phys. 167, 2 (2011).
3 M. Zhang, Y. Z. Liu and Z. M. Cao, Math. Probl. Eng. 2014, (2014).
4 M. Al Ahmad, J. Electron. Mater. 43, 2 (2014).
5 M. A. Ilyas and J. Swingler, Energy 125, 716 (2017).   DOI
6 Y. Cha, J. Hong, J. Lee, J. M. Park and K. Kim, Sensors 16, 7 (2016).
7 Y. S. Cha and J. Seo, J. Intel. Mat. Syst. Str. 29, 7 (2018).
8 A. Delnavaz and J. Voix, Smart Mat. Struct. 23, 10 (2014).
9 M. Renaud, P. Fiorini, R. van Schaijk and C. van Hoof, Smart Mat. Struct. 21, 4 (2012).
10 J. H. Ahn et al., J. Korean Phys. Soc. 73, 3 (2018).
11 A. Jasim, G. Yesner, H. Wang, A. Safari, A. Maher and B. Basily, Appl. Energ. 224, 438 (2018).   DOI
12 C. H. Yang et al., Sens. Actuators A: Phys. 261, 317 (2017).   DOI
13 F. Cassola, M. Burlando, M. Antonelli and C. F. Ratto, J. Appl. Meteorol. Clim. 47, 12 (2008).
14 M. Peigney and D. Siegert, Smart Mat. Struct. 22, 9 (2013).
15 N. G. Stephen, J. Sound. Vib. 293, 1 (2006).   DOI
16 S. Roundy and P. K. Wright, Smart Mat. Struct. 13, 5 (2004).   DOI
17 H. L. Yang et al., J. Mater. Civil Eng. 29, 11 (2017).
18 S. J. Hwang et al., Curr. Appl. Phys. 15, 6 (2015).
19 K. B. Kim et al., Energ. Convers. Manage. 171, 31 (2018).   DOI
20 J. Xiao, X. Zou and W. Y. Xu, Sensors 17, 10 (2017).
21 Y. Song et al., Int. J. Hydrogen Energy 41, 29 (2016).
22 H. Wang, A. Jasim and X. D. Chen, Appl. Energ. 212, 1083 (2018).   DOI
23 Y. S. Cha et al., Renewable Energy 86, 449 (2016).   DOI
24 M. Kim, J. Dugundji and B. L. Wardle, J. Korean Phys. Soc. 62, 11 (2013).
25 J. Y. Cho et al., Sens. Actuators A: Phys. 280, 340 (2018).   DOI
26 M. Deterre, E. Lefeuvre and E. Dufour-Gergam, Smart Mat. Struct. 21, 8 (2012).
27 A. Khaligh, P. Zeng and C. Zheng, IEEE T. Ind. Electron. 57, 3 (2010).   DOI
28 S. Michelin and O. Doare, J. Fluid Mech. 714, 489 (2013).   DOI
29 S. F. Nabavi, A. Farshidianfar and A. Afsharfard, Appl. Ocean Rese. 76, 174 (2018).   DOI
30 S. Orrego et al., Appl. Energ. 194, 212 (2017).   DOI
31 C. H. Yang et al., Ferroelectrics 449, 1 (2013).   DOI