• Title/Summary/Keyword: Wind generation

Search Result 1,262, Processing Time 0.025 seconds

A Study on the Development of Critical Transmission Operating Constraint Prediction (CTOCP) System With High Wind Power Penetration (대규모 풍력발전 계통 연계시 주요 송전망 제약예측시스템 개발에 관한 연구)

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.86-93
    • /
    • 2015
  • Globally, wind power development is experiencing dramatic growth and wind power penetration levels are increasing. Wind generation is highly variable in time and space and it doesn't guarantee the system reliability and secure system operation. As wind power capacity becomes a significant portion of total generation capacity, the reliability assessment for wind power are therefore needed. At present, this operational reliability assessment is focusing on a generation adequacy perspective and does not consider transmission reliability issues. In this paper, we propose the critical transmission operating constraint prediction(CTOCP) system with high wind power penetration to enhance transmission reliability.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Analysis of Wind Energy Potential on the West Coast of South Korea Using Public Data from the Korea Meteorological Administration (기상청 공공데이터를 활용한 대한민국 서해안 일대의 바람자원 분석)

  • Sangkyun Kang;Sung-Ho Yu;Sina Hadadi;Dae-Won Seo;Jungkeun Oh;Jang-Ho Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.14-24
    • /
    • 2023
  • The significance of renewable energy has been on the rise, as evidenced by the 3020 renewable energy plan and the 2050 carbon neutrality strategy, which seek to advance a low-carbon economy by implementing a power supply strategy centered around renewable energy sources. This study examines the wind resources on the west coast of South Korea and confirms the potential for wind power generation in the area. Wind speed data was collected from 22 automatic weather system stations and four light house automatic weather system stations provided by the Korea Meteorological Administration to evaluate potential sites for wind farms. Weibull distribution was used to analyze the wind data and calculate wind power density. Annual energy production and capacity factors were estimated for 15-20 MW-class large wind turbines through the height correction of observed wind speeds. These findings offer valuable information for selecting wind power generation sites, predicting economic feasibility, and determining optimal equipment capacity for future wind power generation sites in the region.

A Study on Monitoring for based-Photovoltaic/Wind power Hybrid Generation System (가정용 태양광/풍력 Hybrid 발전시스템의 모니터링에 관한 연구)

  • Jung, Byeoung-Young;Cha, In-Su;Lim, Jung-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.365-368
    • /
    • 2006
  • The objective of this research is to investigate usage of 3KW photovoltaic-wind power hybrid generation system composed of 500W solar power generator and 400W wind power generator in a parallel circuit. In addition, solar radiation meter and wind monitor have been installed into each generation system to obtain the practical operating data that monitored in monthly, daily and hourly. These data that are independent to weather change and location would provide adequate generation output on average and cope with emergency situation in generation system In conclusion, based on this study, it could be considered for 3KW combined generation system to be gradually propagated to houses and small-size public facilities.

  • PDF

Development and Utilization of Wind Energy in Korea

  • Son, Choong-Yul;Byun, Hyo-In
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.349-353
    • /
    • 2001
  • Korea has a variety of favorable conditions for utilizing wind as energy. First of all, as a geographical characteristic, it is a peninsular country with its three frontiers surrounded by sea. Such a location makes the country influenced, all the year round, both by sea winds and by seasonal winds, so that it has a good possibility of putting its rich wind resources to use as an energy source. Particularly, in view of the results of observations and analysis of actual data about wind sources, it is quite possible to build wind paver plants in many regions across the country, such as inhabited islands dotted on its southern and western coasts around the Korean peninsular, a number of uninhabited islets attached the main islands, large-scaled reclaimed lands, and major inland areas. In Korea, the attempt to develop the technology of wind paver generation started in the 1970's. It was since 1988, when the Law on the promotion of Alternative Energy Development was enacted, that research and development activities for employing the wind force as a part of energy source have got into full swing. At that moment, however, due to the low level of domestic technological development, such efforts were mainly focused on the attainment of basic technologies with regard to wind power generation. Recently, there have been many noticeable changes in the international as well as domestic environments, such as the conclusion of the International Climate Treaty and the increase in public concerns of natural environment. It is quite possible to predict that the demand for wind paver generation will increase in the near future. Therefore, recognizing that wind, as a clean energy source, can be a promising method for coping with the International Climate Treaty and for replacing the fossil fuel, oil, this essay investigates the development history of wind paver generation systems and the status of technological development in Korea and presents an appropriate model for the development of the paver generation system that can compete with other energy sources.

  • PDF

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

The Effects of Wind Power Generation Exports on the National Economy (풍력발전 해외수출의 경제적 파급효과 분석)

  • Jin, Se-Jun;Jeong, Dong-Won;Kwon, Yong-O;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.281-291
    • /
    • 2012
  • Recently, global economy has recovered and aspects of the renewable energy industry in the global competition is more fierce, the new growth engines of the major countries, including the United States and China, industry promotion policy as being deployed. Major advanced countries and Korea also invested a lot of money to wind power development as a part of renewable energy development and promoting the construction of wind power generation. The global wind power generation market is expected to further increase the scale to about 70 billion US dollars, thus, Korea as well as the installation of domestic wind power overseas actively considering. This study uses input-output analysis to estimate the role of wind power generation sector exports national economy. More specifically, this study shows what national economy effect of production-inducing effect, value-added inducing effect, and employment-inducing effect are explored with demand-driven moel. After define wind power generation sector what small sized of Input-Output table 168 sectors among 11 sectors, this study pays particular and close attention to wind power generation sector by taking the sector as exogenous specification and then investigating economic impacts of it. The wind power generation exportation case of overseas 100 billion won, production-inducing effect, value-added inducing effect, and employment-inducing effect are 205 billion won, 68 billion won and 1,054 persons, respectively. These quantitative information can be usefully utilized in the policy-making for the industrialization of wind power generation exports.

Wind flow characteristics and their loading effects on flat roofs of low-rise buildings

  • Zhao, Zhongshan;Sarkar, Partha P.;Mehta, Kishor C.;Wu, Fuqiang
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.25-48
    • /
    • 2002
  • Wind flow and pressure on the roof of the Texas Tech Experimental Building are studied along with the incident wind in an effort to understand the wind-structure interaction and the mechanisms of roof pressure generation. Two distinct flow phenomena, cornering vortices and separation bubble, are investigated. It is found for the cornering vortices that the incident wind angle that favors formation of strong vortices is bounded in a range of approximately 50 degrees symmetrical about the roof-corner bisector. Peak pressures on the roof corner are produced by wind gusts approaching at wind angles conducive to strong vortex formation. A simple analytical model is established to predict fluctuating pressure coefficients on the leading roof corner from the knowledge of the mean pressure coefficients and the incident wind. For the separation bubble situation, the mean structure of the separation bubble is established. The role of incident wind turbulence in pressure-generation mechanisms for the two flow phenomena is better understood.