• 제목/요약/키워드: Wind directions

검색결과 325건 처리시간 0.032초

풍하중을 받는 구조물의 3차원 유한요소해석 (Three Dimensional Finite Element Analysis of Structures under Wind Loads)

  • 김병완;김운학;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.26-33
    • /
    • 2001
  • This paper compares conventional beam analyses with exact three dimensional plate analyses through numerical examples with plates under wind loads in order to study the disadvantages of conventional simplified beam analyses of wind-loaded structures, Bending moments and principal stresses from beam analyses are good agreements with those from plate analyses but torsional moments are not. And it is possible to get result forces which are variant along width directions from plate analyses but not from beam analyses due to constant distributions of result forces along width directions. Therefore exact three dimensional plate analyses are required in the analyses of wind-loaded structures instead of conventional simplified beam analyses.

  • PDF

한국 서해안에서의 설계파의 결정 (Determination of Design Waver along the West Coast of Korea)

  • 김태인;청형식
    • 물과 미래
    • /
    • 제20권2호
    • /
    • pp.127-138
    • /
    • 1987
  • 서해지역에서 해안구조물을 위한 설계파는 연안지상측후소의 과거 풍속자료로부터 해상풍의 설계풍속을 산정하고 지역별로 결정되는 취송역으로부터 파랑예측모델을 이용하여 결정하는 방법이 제안되었다. 서해에서 설계파를 지배하는 바람은 북서방향(W~N)의 동기계절풍과 남서(WSW~S) 방향의 하기계절풍 및 태풍이며 해상풍의 풍속은 U$\geq$20m/s의 탄풍에 대하여 연안의 지상풍속의 0.8~0.9배를 나타낸다. 서해의 해안지역은 그 위치여건에 따라 세 지역으로 구분할 수 있으며 각각의 지역에 대하여 설계파산정을 위한 취송역을 결정할 수 있다. 수정된 S.M.B. 법에 의하면 서해지역에서 100년빈도 설계파의 심해유의파고는 4.4m~8.3m, 주기는 8.9초~12.0초의 범위를 보인다.

  • PDF

Mechanical properties of material in Q345GJ-C thick steel plates

  • Yang, Na;Su, Chao;Wang, Xiao-Feng;Bai, Fan
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.517-536
    • /
    • 2016
  • Thick steel plate is commonly found with mega steel structures but its properties have not been fully explored. Grade Q345GJ-C steel plate with thickness ranging from 60 mm to 120 mm are studied in this paper. Both the static and cyclic performance of material in different directions (horizontal and through-thickness directions) and locations (outer surface, 1/4 thickness and mid-depth) are experimentally obtained. The accumulative damage during cyclic loading is also calculated by using bilinear mixed hardening (BMH) constitutive relationship together with the Lemaitre's damage model. Results show that the static properties are better at the outer surface of thick steel plates than those at mid-depth. Properties in through-thickness direction are similar to those at mid-depth in the horizontal direction. The cyclic performance at different locations of a given plate is similar within the range of strain amplitude studied. However, when damage parameters identified from monotonic tensile tests are included in the numerical simulation of cyclic loading tests, damage is found accumulating faster at mid-depth than close to outer surface.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

고층 타워에 작용하는 동적 풍압력의 POD 방법을 이용한 시공간적 특성 해석 (Proper Orthogonal Decomposition Analysis of Dynamic Wind Pressures Acting on a Tall Tower Model)

  • 이미화;함희정
    • 산업기술연구
    • /
    • 제24권B호
    • /
    • pp.29-36
    • /
    • 2004
  • The wind and wind-induced dynamic wind pressures fluctuate irregularly according to time and space. In this study, the proper orthogonal decomposition(POD) technique is applied to wind pressures acting on a tall tower model, and the following results are found: the along-wind and across-wind forces can be reconstructed by only four dominant POD modes, and the reconstructed errors are 4.71% and 22%, respectively for across-wind and along-wind directions. The physical meanings for dominant modes are also presented in the paper. The POD analysis can compress complex wind pressure data only by a few dominant modes and interpret spatio-temporal characteristics of wind pressure by novel way while existing statistical methods do not have such benefits.

  • PDF

남극 세종기지의 전산유동해석에 의한 풍력자원평가 (Wind Resource Assessment of the Antarctic King Sejong Station by Computational Flow Analysis)

  • 김석우;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.29-35
    • /
    • 2007
  • In accordance with Madrid and Kyoto Protocols, a 10kw wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.

대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구 (The Prediction of the location and electric Power for Small Wind Powers in the H University Campus)

  • 조관행;윤재옥
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.

PIV 속도장 측정기법을 이용한 공장 실내환기 개선방안 연구 (Improvement of Natural Ventilation in a Factory Building Using a Velocity Field Measurement Technique)

  • 임희창;김형범;이상준
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1427-1435
    • /
    • 2001
  • Air movement in wokplaces, whether resulting from a forced ventilation system or naturally occurring airflow, has a significant impact on occupational health. In a huge shipbuilding factory building, typical harmful factors such as fume or vaporized gas from welding and cutting of steel plates, and dusts from grinding give unpleasant feeling. From field data survey, the yearly dominant, wind directions for the shipbuilding factory building tested were northwest, northeast and southeast Among the three wind directions, the ventilation improvement was the worst for the northeastern wind. This study was focused on location of the opening vents in order to utilize the natural ventilation effectively. Instantaneous velocity fields inside the 1/1000 scale-down factory building model were measured using a 2-frame PIV system. The factory building model was embedded in an atmospheric boundary layer simulated in a wind tunnel. The modified vents improve the internal Ventilation flow with increasing the flow speed more than two times, compared with that of present vents.

WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사 (Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models)

  • 원명수;한선호
    • 한국농림기상학회지
    • /
    • 제15권1호
    • /
    • pp.17-25
    • /
    • 2013
  • 본 연구는 복잡한 산악지형에서 바람장 변화를 해석하고, 산불발생시 확산방향을 예측하여 산불방지 전략에 활용하기 위해서 수행되었다. 연구 대상지는 2000년 4월 7일 산불이 발생하여 10일간 진행되었던 삼척지역을 대상으로 하였다. 삼척 산불피해지는 복잡한 산악구조를 가지고 있는데 먼저 중규모 기상 모델인 WRF를 사용하여 대상지에 설치한 AWS(4 지점)의 관측결과와 비교하였다. WRF 모의 결과, 4개 지점의 풍속은 AWS 관측지점의 풍속에 비해 5~8m/s(200% 과대평가) 강하였으며, 관측된 풍향은 지점마다 다양하게 나타난 것에 비해 모의된 풍향은 모든 지점에서 서풍계열로 나타났다. 결과적으로 WRF와 같은 중규모 기상모델은 복잡한 산악지형에서의 바람장 변화를 잘 모의하지 못하였다. 이러한 문제점을 해결하기 위해 미기상 대기유동장 수치모형인 ENVI-met 프로그램을 이용하여 지표면 높이에서 삼척 LTER 지역의 국지규모 바람장을 모의하였다. 지형효과에 의한 모델의 민감도를 위해 다양한 초기 조건(기류, 온 습도, 대기난류, 토양 및 식생 모형)들을 고려하여 분석하였다. ENVI-met 모의결과, 풍속은 실측과 비교할 때 약 70%의 정확도를 보였으며, 풍향은 계곡부와 능선부에서 지형효과로 인한 변화를 잘 반영하였다. 향후 ENVI-met은 산불확산예측 및 산불방지전략 수립을 위해 미기상 대기유동장 수치모형을 이용하여 산악지역의 미기상 해석에 관한 연구가 필요할 것으로 판단된다.

선박간 이격거리에 따른 WIND SHIELDING EFFECT 검토 (The Study on Wind Shielding Effects According to Distance Between Two Ships)

  • 구명준;하문근;최재웅;배준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1413-1417
    • /
    • 2004
  • The environmental elements which naturally occur can result in structural damages and operating faults of vessels under the navigation and mooring. These primary factors are considered as wind, waves and tide. In order to investigate wind shielding effects with respect to wind load conditions between two ships which face the wind directly or slantingly to the wind direction, this numerical simulation was preferred in terms of the variation of wind loads according to different distances, wind velocities and wind directions between two ships. The results were proved to be quite reasonable, comparing with experimental data from Danish Maritime Institute, and the report, "Environmental Conditions And Environmental Loads" published by Det Norske Veritas.

  • PDF