• Title/Summary/Keyword: Wind directions

Search Result 325, Processing Time 0.021 seconds

Three Dimensional Finite Element Analysis of Structures under Wind Loads (풍하중을 받는 구조물의 3차원 유한요소해석)

  • 김병완;김운학;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.26-33
    • /
    • 2001
  • This paper compares conventional beam analyses with exact three dimensional plate analyses through numerical examples with plates under wind loads in order to study the disadvantages of conventional simplified beam analyses of wind-loaded structures, Bending moments and principal stresses from beam analyses are good agreements with those from plate analyses but torsional moments are not. And it is possible to get result forces which are variant along width directions from plate analyses but not from beam analyses due to constant distributions of result forces along width directions. Therefore exact three dimensional plate analyses are required in the analyses of wind-loaded structures instead of conventional simplified beam analyses.

  • PDF

Determination of Design Waver along the West Coast of Korea (한국 서해안에서의 설계파의 결정)

  • 김태인;청형식
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.127-138
    • /
    • 1987
  • For determination of the design wave, a method of estimating the design wind speed at sea from the wind records at the nearby weather stations on land is proposed. Along the West Coast, the design wind speed are shown to have two main directions; namely, N through W, and WSW through S. Through the analysis of weather maps, fetches for the main wind directions along the West Coast are determined. The wind speeds at sea are found to have 0.8~0.9 times the wind speed at the stations on land for U$\geq$20m/s. The West Coast may be divided into three regions for which fetches are determind uniquely. Design waves with return period of 100 years are determined by the revised S.M..B. method along the West Coast, and show the deep water significant wave heights of 4.4~8.3 meters with wave periods of 8.9~12.0 seconds.

  • PDF

Mechanical properties of material in Q345GJ-C thick steel plates

  • Yang, Na;Su, Chao;Wang, Xiao-Feng;Bai, Fan
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.517-536
    • /
    • 2016
  • Thick steel plate is commonly found with mega steel structures but its properties have not been fully explored. Grade Q345GJ-C steel plate with thickness ranging from 60 mm to 120 mm are studied in this paper. Both the static and cyclic performance of material in different directions (horizontal and through-thickness directions) and locations (outer surface, 1/4 thickness and mid-depth) are experimentally obtained. The accumulative damage during cyclic loading is also calculated by using bilinear mixed hardening (BMH) constitutive relationship together with the Lemaitre's damage model. Results show that the static properties are better at the outer surface of thick steel plates than those at mid-depth. Properties in through-thickness direction are similar to those at mid-depth in the horizontal direction. The cyclic performance at different locations of a given plate is similar within the range of strain amplitude studied. However, when damage parameters identified from monotonic tensile tests are included in the numerical simulation of cyclic loading tests, damage is found accumulating faster at mid-depth than close to outer surface.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

Proper Orthogonal Decomposition Analysis of Dynamic Wind Pressures Acting on a Tall Tower Model (고층 타워에 작용하는 동적 풍압력의 POD 방법을 이용한 시공간적 특성 해석)

  • Yi, Mee-Hwa;Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.29-36
    • /
    • 2004
  • The wind and wind-induced dynamic wind pressures fluctuate irregularly according to time and space. In this study, the proper orthogonal decomposition(POD) technique is applied to wind pressures acting on a tall tower model, and the following results are found: the along-wind and across-wind forces can be reconstructed by only four dominant POD modes, and the reconstructed errors are 4.71% and 22%, respectively for across-wind and along-wind directions. The physical meanings for dominant modes are also presented in the paper. The POD analysis can compress complex wind pressure data only by a few dominant modes and interpret spatio-temporal characteristics of wind pressure by novel way while existing statistical methods do not have such benefits.

  • PDF

Wind Resource Assessment of the Antarctic King Sejong Station by Computational Flow Analysis (남극 세종기지의 전산유동해석에 의한 풍력자원평가)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • In accordance with Madrid and Kyoto Protocols, a 10kw wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.

The Prediction of the location and electric Power for Small Wind Powers in the H University Campus (대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구)

  • Cho, Kwan Haeng;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.

Improvement of Natural Ventilation in a Factory Building Using a Velocity Field Measurement Technique (PIV 속도장 측정기법을 이용한 공장 실내환기 개선방안 연구)

  • Im, Hui-Chang;Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1427-1435
    • /
    • 2001
  • Air movement in wokplaces, whether resulting from a forced ventilation system or naturally occurring airflow, has a significant impact on occupational health. In a huge shipbuilding factory building, typical harmful factors such as fume or vaporized gas from welding and cutting of steel plates, and dusts from grinding give unpleasant feeling. From field data survey, the yearly dominant, wind directions for the shipbuilding factory building tested were northwest, northeast and southeast Among the three wind directions, the ventilation improvement was the worst for the northeastern wind. This study was focused on location of the opening vents in order to utilize the natural ventilation effectively. Instantaneous velocity fields inside the 1/1000 scale-down factory building model were measured using a 2-frame PIV system. The factory building model was embedded in an atmospheric boundary layer simulated in a wind tunnel. The modified vents improve the internal Ventilation flow with increasing the flow speed more than two times, compared with that of present vents.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

The Study on Wind Shielding Effects According to Distance Between Two Ships (선박간 이격거리에 따른 WIND SHIELDING EFFECT 검토)

  • Koo, Myoung-Jun;Ha, Mun-Keun;Choi, Jae-Woong;Bae, Jun-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1413-1417
    • /
    • 2004
  • The environmental elements which naturally occur can result in structural damages and operating faults of vessels under the navigation and mooring. These primary factors are considered as wind, waves and tide. In order to investigate wind shielding effects with respect to wind load conditions between two ships which face the wind directly or slantingly to the wind direction, this numerical simulation was preferred in terms of the variation of wind loads according to different distances, wind velocities and wind directions between two ships. The results were proved to be quite reasonable, comparing with experimental data from Danish Maritime Institute, and the report, "Environmental Conditions And Environmental Loads" published by Det Norske Veritas.

  • PDF