• Title/Summary/Keyword: Wind climate

Search Result 614, Processing Time 0.029 seconds

Economic Evaluation Algorithm of Island Micro-grid for Utility and Independent Power Producer (전력회사와 발전사업자 측면에서 도서지역용 마이크로그리드의 경제성평가 알고리즘)

  • Nam, Yang-Hyum;Lee, Hoo-Dong;Kim, Yu-Rim;Marito, Ferrira;Kim, Mi-Young;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1032-1038
    • /
    • 2017
  • Recently, regulation on carbon emissions has been strengthened according to the new climate change convention (COP21) held in Paris, and then Korea has decided to reduce CO2 emissions by 37% until 2030. As one of countermeasures, the government has energetically performed demonstration projects of island micro-grid including solar power, wind power and energy storage system. However, in order to smoothly introduce island micro-grid, it is a critical issue to carry out the economic evaluation for power utility aspect and independent power producer aspect. Therefore, this paper proposes economic evaluation algorithms of island micro-grid which are based on the present worth method, considering cost and benefit factors in the aspect of both sides. Firstly, in case of power utility this paper proposes algorithm to estimate a period of return on investment according to the introduction capacity of distributed generators replacing diesel generator. And also, in case of independent power producer, this paper proposes evaluation algorithm to estimate weighting factor of SMP and benefit rate based on break-even point related with cost and benefit. From a case study result on real island micro-grid model, it is confirmed that proposed algorithms are useful and practical for the economic evaluation of island micro-grid.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

In-transit development of color abnormalities in turkey breast meat during winter season

  • Carvalho, Rafael H.;Honorato, Danielle C.B.;Guarnieri, Paulo D.;Soares, Adriana L.;Pedrao, Mayka R.;Oba, Alexandre;Paiao, Fernanda G.;Ida, Elza I.;Shimokomaki, Massami
    • Journal of Animal Science and Technology
    • /
    • v.60 no.1
    • /
    • pp.30.1-30.10
    • /
    • 2018
  • Background: The poultry industry suffers losses from problems as pale, soft and exudative (PSE), and dark, firm and dry (DFD) meat can develop in meat as a result of short- and long-term stress, respectively. These abnormalities are impacted by pre-slaughter animal welfare. Methods: This work evaluated the effects of open vehicle container microclimate, throughout the $38{\pm}10km$ journey from the farm to the slaughterhouse, on commercially turkey transported during the Brazilian winter season. The journey was initiated immediately after water bath in truck fitted with portable Kestrel anemometers to measure air ventilation, relative humidity, temperature and ventilation. Results: The inferior compartments of the middle and rear truck regions showed highest temperature and relative humidity, and lower air ventilation. In addition, the superior compartments of the front truck regions presented lower temperature and wind chill, and highest air ventilation. The breast meat samples from animals located at the inferior compartments of the middle and rear truck regions and subjected to with water bath (WiB) treatment presented highest DFD-like and had lowest PSE-like meat incidence than those from animals located at other compartments within the container. Lower incidence of PSE-like meat was observed in birds without water bath (WoB). Conclusions: Assessment on turkeys transported under Brazilian southern winter conditions revealed that breast meat quality can be affected by relative humidity, air ventilation, temperature, and transport under subtropical conditions promoting color abnormalities and the formation of simultaneously PSE-like and DFD-like meat.

Extreme Enhancements in GPS TEC on 8 and 10 November 2004

  • Chung, Jong-Kyun;Jee, Gun-Hwa;Kim, Eo-Jin;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • It is a mistaken impression that the midlatitude ionosphere was a very stable region with well-known morphology and physical mechanism. However, the large disturbances of midlatitude ionospheric contents in response to global thermospheric changes during geomagnetic storms are reported in recent studies using global GPS TEC map and space-born thermospheric UV images, and its importance get higher with the increasing application areas of space navigation systems and radio communication which are mostly used in the midlatitudes. Positive and negative storm phases are used to describe increase and decrease of ionospheric electron density. Negative storms result generally from the enhanced loss rate of electron density according to the neutral composition changes which are initiated by Joule heating in high-latitudes during geomagnetic storms. In contrast, positive ionospheric storms have not been well understood because of rare measurements to explain the mechanisms. The large enhancements of ground-based GPS TEC in Korea were observed on 8 and 10 November 2004. The positive ionospheric storm was continued except for dawn on 8 November, and its maximum value is ~65 TECU of ~3 times compared with the monthly mean TEC values. The other positive phase on 10 November begin to occur in day sector and lasted for more than 6 hours. The O/N2 ratios from GUVI/TIMED satellite show ~1.2 in northern hemisphere and ~0.3 in southern hemisphere of the northeast Asian sector on 8 and 10 November. We suggest the asymmetric features of O/N2 ratios in the Northeast Asian sector may play an important role in the measured GPS TEC enhancements in Korea because global thermospheric wind circulation can globally change the chemical composition during geomagnetic storms.

  • PDF

Topic Model Analysis of Research Trend on Renewable Energy (신재생에너지 동향 파악을 위한 토픽 모형 분석)

  • Shin, KyuSik;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6411-6418
    • /
    • 2015
  • To respond the climate change and environmental pollution, the studies on renewable energy policies are increasing. The renewable energy is a new growth engine technology represented by the green industry and green technology. At present, the investments for the renewable energy supply and technology development projects of three main strategy sectors such as sunlight, wind power and hydrogen fuel cell are implemented in our country, while they are still in the early stage, accordingly reducing those uncertainty for the research direction and investment fields is the most urgent issue among others. Thus, this study applied text mining method and multinominal topic model among the big data analysis methods on our country's newspaper articles concerning the renewable energy over the last 10 years, and then analyzed the core issues and global research trend, forecasting the renewable energy fields with the growth potential. It is predicted that these results of the study based on information and communication technology will be actively applied on the renewable energy fields.

Variation of the Hemispheric Asymmetry of the Equatorial Ionization Anomaly with Solar Cycle

  • Kwak, Young-Sil;Kil, Hyosub;Lee, Woo Kyoung;Yang, Tae-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.

Algorithms for Determining Korea Meteorological Administration (KMA)'s Official Typhoon Best Tracks in the National Typhoon Center (기상청 국가태풍센터의 태풍 베스트트랙 생산체계 소개)

  • Kim, Jinyeon;Hwang, Seung-On;Kim, Seong-Su;Oh, Imyong;Ham, Dong-Ju
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.381-394
    • /
    • 2022
  • The Korea Meteorological Administration (KMA) National Typhoon Center has been officially releasing reanalyzed best tracks for the previous year's northwest Pacific typhoons since 2015. However, while most typhoon researchers are aware of the data released by other institutions, such as the Joint Typhoon Warning Center (JTWC) and the Regional Specialized Meteorological Center (RSMC) Tokyo, they are often unfamiliar with the KMA products. In this technical note, we describe the best track data released by KMA, and the algorithms that are used to generate it. We hope that this will increase the usefulness of the data to typhoon researchers, and help raise awareness of the product. The best track reanalysis process is initiated when the necessary database of observations-which includes satellite, synoptic, ocean, and radar observations-has become complete for the required year. Three categories of best track information-position (track), intensity (maximum sustained winds and central pressure), and size (radii of high-wind areas)-are estimated based on scientific processes. These estimates are then examined by typhoon forecasters and other internal and external experts, and issued as an official product when final approval has been given.

Climate Warming and Occupational Heat and Hot Environment Standards in Thailand

  • Phanprasit, Wantanee;Rittaprom, Kannikar;Dokkem, Sumitra;Meeyai, Aronrag C.;Boonyayothin, Vorakamol;Jaakkola, Jouni J.K.;Nayha, Simo
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.119-126
    • /
    • 2021
  • Background: During the period 2001 to 2016, the maximum temperatures in Thailand rose from 38-41℃ to 42-44℃. The current occupational heat exposure standard of Thailand issued in 2006 is based on wet bulb globe temperature (WBGT) defined for three workload levels without a work-rest regimen. This study examined whether the present standard still protects most workers. Methods: The sample comprised 168 heat acclimatized workers (90 in construction sites, 78 in foundries). Heart rate and auditory canal temperature were recorded continuously for 2 hours. Workplace WBGT, relative humidity, and wind velocity were monitored, and the participants' workloads were estimated. Heat-related symptoms and signs were collected by a questionnaire. Results: Only 55% of the participants worked in workplaces complying with the heat standard. Of them, 79% had auditory canal temperature ≤ 38.5℃, compared with only 58% in noncompliant workplaces. 18% and 43% of the workers in compliant and noncompliant workplaces, respectively, had symptoms from heat stress, the trend being similar across all workload levels. An increase of one degree (C) in WBGT was associated with a 1.85-fold increase (95% confidence interval: 1.44-2.48) in odds for having symptoms. Conclusion: Compliance with the current occupational heat standard protects 4/5 of the workers, whereas noncompliance reduces this proportion to one half. The reasons for noncompliance include the gaps and ambiguities in the law. The law should specify work/rest schedules; outdoor work should be identified as an occupational heat hazard; and the staff should include occupational personnel to manage heat stress in establishments involving heat exposure.

A Study on Analysis of Mooring Safety Sensitivity According to the Arrangement of Bitt Against Gust (돌풍 대비용 직주 배치에 따른 계류안전성 민감도 분석 연구)

  • Kim, Seungyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.767-776
    • /
    • 2020
  • Due to the recent climate change caused by global warming, weather changes in a different pattern from the past have occurred, and the increase in seawater temperature has led to an increase in the size and intensity of typhoons. Accordingly, there is an increasing need for bitts that can be used to secure mooring safety of the ship when a sudden gust occurs. Based on 12 scenarios of a mooring safety evaluation program, this study analyzed the criteria for arranging bollard and bitt, and analyzed the sensitivity of mooring safety when using storm bitts. As a result of the evaluation, it was analyzed that the mooring factor value decreased compared to the general mooring line arrangement when the fore and stern breastline were added to the bitts for gusts. The results of this study can be used as basic data for proposing storm bitts arrangements for gusts in consideration of the characteristics of berth ships and ports. From the perspective of ship operators, storm bitts at the pier will be an effective method for securing the ship's mooring safety in case of a gust of wind.

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model (황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석)

  • Kang, Misun;Lee, Woojeong;Chang, Pil-Hun;Kim, Mi-Gyeong;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2022
  • This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.