Browse > Article
http://dx.doi.org/10.5140/JASS.2019.36.3.159

Variation of the Hemispheric Asymmetry of the Equatorial Ionization Anomaly with Solar Cycle  

Kwak, Young-Sil (Korea Astronomy and Space Science Institute)
Kil, Hyosub (The Johns Hopkins University Applied Physics Laboratory)
Lee, Woo Kyoung (Korea Astronomy and Space Science Institute)
Yang, Tae-Yong (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.36, no.3, 2019 , pp. 159-168 More about this Journal
Abstract
In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.
Keywords
equatorial ionization anomaly; hemispheric asymmetry; solar cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu H, Watanabe S, Seasonal variation of the longitudinal structure of the equatorial ionosphere: Does it reflect tidal influences from below? J. Geophys. Res. 113, A08315 (2008). https://doi.org/10.1029/2008JA013027   DOI
2 Liu L, Zhao B, Wan W, Ning B, Zhang ML, et al., Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements, J. Geophys. Res. 114, A02302 (2009). https://doi.org/10.1029/2008JA013819   DOI
3 Mitra SK, Geomagnetic control of region $F_2$ of the ionosphere, Nature, 158, 668-669 (1946). https://doi.org/10.1038/158668a0   DOI
4 Moffett RJ, The equatorial anomaly in the electron distribution of the terrestrial F-region, Fund. Cosmic Phys. 4, 313-391 (1979). http://adsabs.harvard.edu/abs/1979FCPh....4..313M
5 Namba S, Maeda KI, Radio Wave Propagation (Corona, Tokyo, 1939), 86.
6 Oh SJ, Kil H, Kim WT, Paxton LJ, Kim YH, The role of the vertical $E{\times}B$ drift for the formation of the longitudinal plasma density structure in the low-latitude F region, Ann. Geophys. 26, 2061-2067 (2008). https://doi.org/10.5194/angeo-26-2061-2008   DOI
7 Rishbeth H, The equatorial F-layer: progress and puzzles, Ann. Geophys. 18, 730-739 (2000). https://doi.org/10.1007/s00585-000-0730-6   DOI
8 Sagawa E, Immel TJ, Frey HU, Mende SB, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. Geophys. Res. 110, A11302 (2005). https://doi.org/10.1029/2004JA010848   DOI
9 Scherliess L, Fejer BG, Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res. 104, 6829-6842 (1999). https://doi.org/10.1029/1999JA900025   DOI
10 Scherliess L, Thompson DC, Schunk RW, Longitudinal variability of low-latitude total electron content: Tidal influences, J. Geophys. Res. 113, A01311 (2008). https://doi.org/10.1029/2007JA012480   DOI
11 Stolle C, Manoj C, Lühr H, Maus S, Alken P, Estimating the daytime equatorial ionization anomaly strength from electric field proxies, J. Geophys. Res. 113, A09310 (2008). https://doi.org/10.1029/2007JA012781   DOI
12 Su YZ, Bailey GJ, Oyama KI, Balan N, A modeling study of the longitudinal variations in the north-south asymmetries of the ionospheric equatorial anomaly, J. Atmos. Terr. Phys. 59, 1299-1310 (1997). https://doi.org/10.1016/S1364-6826(96)00016-8   DOI
13 Fejer BG, Jensen JW, Su SY, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res. 113, A05304 (2008). https://doi.org/10.1029/2007JA012801   DOI
14 Hanson WB, Moffett RJ, Ionization transport effects in the equatorial F region, J. Geophys. Res. 71, 5559-5572 (1966). https://doi.org/10.1029/JZ071i023p05559   DOI
15 Heelis RA, Hanson WB, Interhemispheric transport induced by neutral zonal winds in the F region, J. Geophys. Res. 85, 3045-3047 (1980). https://doi.org/10.1029/JA085iA06p03045   DOI
16 Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, et al., Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett. 33, L15108 (2006). https://doi.org/10.1029/2006GL026161   DOI
17 Jee G, Lee HB, Kim YH, Chung JK, Cho J, Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective, J. Geophys. Res. 115, A10319 (2010). https://doi.org/10.1029/2010JA015432   DOI
18 Kil H, Oh SJ, Kelley MC, Paxton LJ, England SL, et al., Longitudinal structure of the vertical $E{\times}B$ drift and ion density seen from ROCSAT-1, Geophys. Res. Lett. 34, L14110 (2007). https://doi.org/10.1029/2007GL030018   DOI
19 Jee G, Schunk RW, Scherliess L, Comparison of IRI-2001 with TOPEX TEC measurements, J. Atmos. Sol.-Terr. Phys. 67, 365-380 (2005). https://doi.org/10.1016/j.jastp.2004.08.005   DOI
20 Kil H, DeMajistre R, Paxton LJ, Zhang Y, Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI, J. Atmos. Sol.-Terr. Phys. 68, 1672-1681 (2006). https://doi.org/10.1016/j.jastp.2006.05.024   DOI
21 Kil H, Oh SJ, Paxton LJ, Fang TW, High-resolution vertical drift model driven from the ROCSAT-1 data, J. Geophys. Res. 114, A10314 (2009). https://doi.org/10.1029/2009JA014324   DOI
22 Kil H, Paxton LJ, Causal link of longitudinal plasma density structure to vertical plasma drift and atmospheric tides: A review, in IAGA Special Sopron Book Series, vol. 2, Aeronomy of the Earth's Atmosphere and Ionosphere, eds. Abdu MA, Pancheva D (Springer, New York, 2011) 349-361.
23 Kil H, Talaat ER, Oh SJ, Paxton LJ, England SL, Su SJ, Wave structures of the plasma density and vertical $E{\times}B$drift in low-latitude F region, J. Geophys. Res. 113, A09312 (2008). https://doi.org/10.1029/2008JA013106   DOI
24 Lee WK, Kil H, Kwak YS, Wu Q, Cho S, et al., The winter anomaly in the middle-latitude F region during solar minimum period observed by the constellation observing system for meteorology, ionosphere, and climate, J. Geophys. Res. 116, A02302 (2011). http://doi.org/10.1029/2010JA015815   DOI
25 Basu S, Larson J, Turbulence in the upper atmosphere: Effects on satellite systems, in 33rd Aerospace Sciences Meeting and Exhibit (AIAA), Reno, NV, 9-12 Jan 1995. https://doi.org/10.2514/6.1995-548
26 Appleton EV, Two anomalies in the ionosphere, Nature, 157, 691-693 (1946). https://doi.org/10.1038/157691a0   DOI
27 Aydogdu M, North-south asymmetry in the ionospheric equatorial anomaly in the African and the West Asian regions produced by asymmetrical thermospheric winds, J. Atmos. Terr. Phys. 50, 623-627 (1988). https://doi.org/10.1016/0021-9169(88)90060-8   DOI
28 Balan N, Bailey GJ, Moffett RJ, Su YZ, Titheridge JE, Modeling studies of the conjugate-hemisphere differences in ionospheric ionization at equatorial anomaly latitudes, J. Atmos. Terr. Phys. 57, 279-292 (1995). https://doi.org/10.1016/0021-9169(94)E0019-J   DOI
29 Benkova NP, Deminov MG, Karpachev AT, Kochenova NA, Kusnerevsky YV, et al., Longitude features shown by topside sounder data and their importance in ionospheric mapping, Adv. Space Res. 10, 57-66 (1990). https://doi.org/10.1016/0273-1177(90)90186-4   DOI
30 England SL, Zhang X, Immel TJ, Forbes JM, DeMajistre R, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: Seasonal variability, Earth Planets Space, 61, 493-503 (2009). https://doi.org/10.1186/BF03353166   DOI
31 Vila P, New dynamic aspects of intertropical $F_2$ ionization, Radio Sci. 6, 945-956 (1971b). https://doi.org/10.1029/RS006i011p00945   DOI
32 Tulasi Ram S, Su SY, Liu CH, FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period, J. Geophys. Res. 114, A06311 (2009). https://doi.org/10.1029/2008JA013880   DOI
33 Venkatraman S, Heelis R, Interhemispheric plasma flows in the equatorial topside ionosphere, J. Geophys. Res. 114, 18457-18464 (2000). https://doi.org/10.1029/2000JA000012   DOI
34 Vila P, Intertropical $F_2$ ionization during June and July 1966, Radio Sci. 6, 689-697 (1971a). https://doi.org/10.1029/ RS006i007p00689   DOI
35 Walker GO, Li TYY, Soegijo J, Kikuchi T, Huang YN, et al., Northsouth asymmetry of the equatorial ionospheric anomaly observed in East Asia during the SUNDIAL-87 campaign, Ann. Geophys. 9, 393- 400 (1991). http://adsabs.harvard.edu/abs/1991AnGeo...9..393W
36 Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, et al., Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res. 112, A07308 (2007). https://doi.org/10.1029/2006JA012240   DOI
37 West KH, Heelis RA, Longitude variations in ion composition in the morning and evening topside equatorial ionosphere near solar minimum, J. Geophys. Res. 101, 7951-7960 (1996). https://doi.org/10.1029/95JA03377   DOI
38 Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, et al., Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett. 34, L19101 (2007a). https://doi.org/10.1029/2007GL030741   DOI
39 Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, et al., Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Threedimensional electron density structures, Geophys. Res. Lett. 34, L11112 (2007b). https://doi.org/10.1029/2007GL029265   DOI
40 Jee G, Schunk RW, Scherliess L, Analysis of TEC data from the TOPEX/Poseidon mission, J. Geophys. Res. 109, A01301 (2004). https://doi.org/10.1029/2003JA010058   DOI
41 Tsai HF, Liu JY, Tsai WH, Liu CH, Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions, J. Geophys. Res. 106, 30363-30369 (2001). https://doi.org/10.1029/2001JA001107   DOI
42 Fejer BG, de Paula ER, Gonsalez SA, Woodman RF, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res. 96, 13901-13906 (1991). https://doi.org/10.1029/91JA01171   DOI
43 Fejer BG, de Paula ER, Heelis RA, Hanson WB, Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite, J. Geophys. Res. 100, 5769-5776 (1995). https://doi.org/10.1029/94JA03240   DOI