DOI QR코드

DOI QR Code

Algorithms for Determining Korea Meteorological Administration (KMA)'s Official Typhoon Best Tracks in the National Typhoon Center

기상청 국가태풍센터의 태풍 베스트트랙 생산체계 소개

  • Kim, Jinyeon (National Typhoon Center, Korea Meteorological Administration) ;
  • Hwang, Seung-On (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Seong-Su (National Typhoon Center, Korea Meteorological Administration) ;
  • Oh, Imyong (Jeju Airport Weather Office, Aviation Meteorological Office) ;
  • Ham, Dong-Ju (National Typhoon Center, Korea Meteorological Administration)
  • 김진연 (기상청 국가태풍센터) ;
  • 황승언 (국립기상과학원 기후연구부) ;
  • 김성수 (기상청 국가태풍센터) ;
  • 오임용 (항공기상청 제주공항기상대) ;
  • 함동주 (기상청 국가태풍센터)
  • Received : 2022.08.22
  • Accepted : 2022.11.14
  • Published : 2022.12.31

Abstract

The Korea Meteorological Administration (KMA) National Typhoon Center has been officially releasing reanalyzed best tracks for the previous year's northwest Pacific typhoons since 2015. However, while most typhoon researchers are aware of the data released by other institutions, such as the Joint Typhoon Warning Center (JTWC) and the Regional Specialized Meteorological Center (RSMC) Tokyo, they are often unfamiliar with the KMA products. In this technical note, we describe the best track data released by KMA, and the algorithms that are used to generate it. We hope that this will increase the usefulness of the data to typhoon researchers, and help raise awareness of the product. The best track reanalysis process is initiated when the necessary database of observations-which includes satellite, synoptic, ocean, and radar observations-has become complete for the required year. Three categories of best track information-position (track), intensity (maximum sustained winds and central pressure), and size (radii of high-wind areas)-are estimated based on scientific processes. These estimates are then examined by typhoon forecasters and other internal and external experts, and issued as an official product when final approval has been given.

Keywords

Acknowledgement

이 연구는 기상청 국가태풍센터 「태풍 분석 및 예측기술개발」(KMA2018-00722) 및 국립기상과학원 「기후예측 현업시스템 개발」(KMA2018-00322)의 지원으로 수행되었습니다.

References

  1. Cha, Y., J. Kim, K. Kang, N.-Y. Kang, and W.-T. Yun, 2016: A study on the determination of Korea affecting tropical cyclone center for best tracking. Adv. Meteorol., 2016, 5946342, doi:10.1155/2016/5946342.
  2. Chang, K. H., J. Kim, W. S. Yoon, K. Y. Byun, G. S. Choi, W. Lee, and J. H. Lee, 2013: Typhoon forecast and analysis status in Korea. Mag. KOSHAM, 13, 6-16.
  3. Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Technical Report NESDIS 11, 47 pp [Available online at https://repository.library.noaa.gov/view/noaa/19322].
  4. Hong, S., and I. Shin, 2013: Wind speed retrieval based on sea surface roughness measurements from spaceborne microwave radiometers. J. Appl. Meteorol. Clim., 52, 507-516. https://doi.org/10.1175/JAMC-D-11-0209.1
  5. Jeon, Y. S., 2016: Typhoon analysis and forecast in Korea. Water Future, 49, 33-37 (in Korean).
  6. Kim, H.-J., I.-J. Moon, and I. Oh, 2022: Comparison of tropical cyclone wind radius estimates between the KMA, RSMC Tokyo, and JTWC. Asia-Pac. J. Atmos. Sci., 58, 563-576, doi:10.1007/s13143-022-00274-5.
  7. Kim, J., 2014: Column: Weather story- typhoon best track. Sci. Technol., 538, 86-89 (in Korean).
  8. Korea Meteorological Administratio [KMA], 2019: Typhoon best track. 3 pp [Available online at https://www.kma.go.kr/download_01/typhoon/typbesttrack_2019.pdf] (in Korean).
  9. Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. J. Appl. Meteorol. Clim., 50, 2149-2166, doi:10.1175/2011JAMC2673.1.
  10. Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Weather Rev., 138, 1459-1473, doi:10.1175/2009MWR3123.1.
  11. Knapp, K. R., and M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc., 91, 363-376, doi:10.1175/2009BAMS2755.1.
  12. Koba, H., S. Osano, T. Hagiwara, S. Akashi, and T. Kikuchi, 1990: Relationship between the CI-number and central pressure and maximum wind speed in typhoons. J. Meteorol. Res., 42, 59-67 (in Japanese).
  13. Kruk, M. C., K. R. Knapp, and D. H. Levinson, 2010: A technique for combining global tropical cyclone best track data. J. Atmos. Ocean. Technol., 27, 680-692, doi:10.1175/2009JTECHA1267.1.
  14. Kunitsugu, M., 2012: Tropical cyclone information provided by the RSMC Tokyo - Typhoon Center. Trop. Cyclone Res. Rev., 1, 51-59, doi:10.6057/2012TCRR01.06.
  15. Lee, W. S., Y. S. Kim, D. H. Kim, and C. Y. Chung, 2011: The parallax correction to improve cloud location error of geostationary meteorological satellite data. Korean J. Remote Sensing, 27, 99-105, doi:10.7780/kjrs.2011.27.2.099 (in Korean with English abstract).
  16. Lu, X., H. Yu, M. Ying, B. Zhao, S. Zhang, L. Lin, L. Bai, and R. Wan, 2021: Western North pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38, 690-699, doi:10.1007/s00376-020-0211-7.
  17. MOIS, 2021: 2020 Disaster yearbook. 463 pp [Available online at https://www.mois.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000014&nttId=89542] (in Korean).
  18. Moon, I. J., S. H. Kim, and J. C. L. Chan, 2019: Climate change and tropical cyclone trend. Nature, 570, E3-E5, doi:10.1038/s41586-019-1222-3.
  19. National Typhoon Center, 2009a: Typhoon forecasting manual. 153 pp [Available online at https://policy.nl.go.kr/search/searchDetail.do?rec_key=SH1_UMO20140066724&kwd=] (in Korean).
  20. National Typhoon Center, 2009b: Tropical cyclone analysis using microwave satellite images. 114 pp [Available online at https://policy.nl.go.kr/search/searchDetail.do?rec_key=SH1_UMO20140089991&kwd=] (in Korean).
  21. National Typhoon Center, 2013: Typhoon reanalysis manual. 64 pp [Available online at https://policy.nl.go.kr/search/searchDetail.do?rec_key=SH1_UMO20140130369&kwd=] (in Korean).
  22. Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287-298. https://doi.org/10.1175/WAF975.1
  23. Olander, T. L., and C. S. Velden, 2015: ADT - advanced Dvorak technique users' guide. 76 pp [Available online at https://tropic.ssec.wisc.edu/misc/adt/guides/ADTV8.2.1_Guide.pdf].
  24. Ono, M., S. Notsuhara, J. Fukuda, Y. Igarashi, and K. Bessho, 2019: Operational use of the typhoon intensity forecasting scheme based on SHIPS (TIFS) and commencement of five-day tropical cyclone intensity forecasts. RSMC Tokyo-Typhoon Center Technical Review, 21, 1-17.
  25. Pandey, R. S., and Y. A. Liou, 2022: Typhoon strength rising in the past four decades. Wea. Clim. Extremes, 36, 100446, doi:10.1016/j.wace.2022.100446.
  26. Sampson, C. R., R. A. Jeffries, C. J. Neumann, and J.-H. Chu, 1995: Tropical cyclone forecasters reference guide 6. Tropical cyclone intensity. Naval Research Laboratory, 48 pp [Available online at https://www.researchgate.net/publication/235066495_Tropical_Cyclone_Forecasters_Reference_Guide_6_Tropical_Cyclone_Intensity].
  27. Song, J. J., Y. Wang, and L. Wu, 2010: Trend discrepancies among three best track data sets of western North pacific tropical cyclones, J. Geophys. Res., 115, D12128, doi:10.1029/2009JD013058.
  28. Tran, T. L., E. A. Ritchie, and S. E. Perkins-Kirkpatrick, 2022: A 50-year tropical cyclone exposure climatology in Southeast Asia. J. Geophys. Res. Atmos., 127, e2021JD036301, doi:10.1029/2021JD036301.
  29. Utsumi, N., and H. Kim, 2022: Observed influence of anthropogenic climate change on tropical cyclone heavy rainfall. Nat. Clim. Change, 12, 436-440, doi:10.1038/s41558-022-01344-2.
  30. Wang, X., L. Wu, F. Ren, Y. Wang, and W. Li, 2008: Influences of tropical cyclones on China during 1965-2004. Adv. Atmos. Sci., 25, 417-426. https://doi.org/10.1007/s00376-008-0417-6
  31. Weather Radar Center, 2010: Radar-based typhoon tracking and monitoring. 80 pp [Available online at https://policy.nl.go.kr/search/searchDetail.do?rec_key=SH1_UMO20140085275&kwd=] (in Korean).
  32. WMO, 2015: Typhoon Committee Operational Manual-Meteorological Component. [Available online at https://library.wmo.int/doc_num.php?explnum_id=7633].
  33. Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone data-base. J. Atmos. Ocean. Technol., 31, 287-301, doi:10.1175/JTECH-D-12-00119.1
  34. Zhang, G., H. Murakami, T. R. Knutson, R. Mizuta, and K. Yoshida, 2020: Tropical cyclone motion in a changing climate. Sci. Adv., 6, eaaz7610, doi:10.1126/sciadv.aaz7610.