• Title/Summary/Keyword: Wind Power

Search Result 2,995, Processing Time 0.027 seconds

Output Control Simulation of Variable Speed Wind Power System using Real Data (실제 데이터를 이용한 가변속 풍력발전시스템의 출력제어 시뮬레이션)

  • Han, Sang-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1342-1344
    • /
    • 2002
  • Wind is a significant and valuable renewable energy resource. It is safe and abundant and can make an important contribution to future clean, sustainable and diversified electricity supplies. Unlike other sources of energy, wind does not pollute the atmosphere nor create any hazardous waste. In some countries wind energy is already competitive with fossil and nuclear power even without accounting for the environmental benefits of wind power. The cost of electricity from conventional power stations does not usually take full account of its environmental impact (acid rain, oil slick clean up, the effects of climate change, etc). In this paper, a transient phenomenon simulation method for Wind Power Generation System(WPGS) under real weather conditions has been proposed. The simulation method is expected to be able to analyze easily under various conditions with considering the sort of wind turbine, the capacity of system and the converter system. Wind turbine connected to the synchronous generator and power converter was simulated.

  • PDF

High efficient welding technology of the offshore wind power plants (해상풍력 발전설비의 고능률 용접기술)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.4-11
    • /
    • 2015
  • The offshore wind power plants are watched as a new market to accomplish the needed energy, bringing technical and economical challenges. Advanced countries in the field of wind industry are now appling the 600 MPa, 150~200 mm thick high strength steel to offshore wind power plants. Moreover, the high efficient welding methods which is weldable ultra tick high strength steel with 1 pass welding are developed and applied in manufacturing the offshore wind tower. This article deals with the present world wide status of offshore power plants and the tendency of the development of high efficient welding technology for constructing the offshore wind tower. This article intends to offer the materials for development and raising of the domestic offshore wind power technology.

Output Power Control of Wind Generation System using Estimated Wind Speed by Support Vector Regression

  • Abo-Khalil Ahmed G.;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.345-347
    • /
    • 2006
  • In this paper, a novel method for wind speed estimation in wind power generation systems is presented. The proposed algorithm is based on estimating the wind speed using Support-Vector-Machines for regression (SVR). The wind speed is estimated using the generator power-speed characteristics as a set of training vectors. SVR is trained off-line to predict a continuos-valued function between the system's inputs and wind speed value. The predicted off-line function as well as the instantaneous generator power and speed are then used to determine the unknown winds speed on-line. The simulation results show that SVR can define the corresponding wind speed rapidly and accurately to determine the optimum generator speed reference for maximum power point tracking.

  • PDF

Study on the Simulation of Grid Connection Type Wind Power System using RTDS (RTDS를 이용한 계통연계형 풍력발전시스템 시뮬레이션에 관한 연구)

  • Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.268-270
    • /
    • 2005
  • A tendency to erect more wind turbines can be observed in order to reduce the environmental consequences of electric power generation. As a result of this, in the near future, wind turbines may start to influence the behavior of electric power systems by interacting with conventional generation and loads. Therefore, wind turbine models that can be integrated into power system simulation software are needed. In this paper, a model that can be used to represent all types of variable speed wind turbines in power system simulations is presented. Wind turbine characteristic equation of a wind turbine is implemented in the RTDS, and the real data of weather conditions are interfaced to the RTDS for the purpose of real time simulation of grid-connection wind power system. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results show that the cost effective verifying for the efficiency and stability of WPGS.

  • PDF

Measured AEP Evaluations of a Small Wind Turbine using Measured Power Curve & Wind Data (측정 출력곡선과 기상자료를 이용한 소형 풍력발전기 연간 발전량 비교평가)

  • Kim, Seokwoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.32-38
    • /
    • 2013
  • In an efforts to encourage renewable energy deployment, the government has initiated so called 1 million green homes program but the accumulated installation capacity of small wind turbine has been about 70kW. It can be explained in several ways such that current subsidy program does not meet public expectations, economic feasibility of wind energy is in doubt or acoustic emission is significant etc. The author investigated annual energy production of Skystream 3.7 wind turbine using measured power curve and wind resource data. The measured power curve of the small wind turbine was obtained through power performance tests at Wol-Ryoung test site. AEP(Annual Energy Production) and CF(Capacity Factor) were evaluated at selected locations with the measured power curve.

A Study on the Optimal Operation Schemes for Large-scale Wind Farm (대규모 풍력 발전 단지의 최적운영 방안 연구)

  • Jeon, Young-Soo;Choy, Young-Do
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.365-371
    • /
    • 2009
  • This paper studies the optimal operation schemes for large scale wind farm. With few operation experiences and fundamental technology for the wind farm, there is a difficult to establish the grid code which is the standard for connecting wind farm to power system. Analysis of the grid code and the operation of other nations for wind farm is used to propose the optimal operation schemes for large-scale wind farm considering the characteristic of our power system, by analyzing the influence of power system by wind farm at Cheju island.

Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems (계통연계 풍력 및 태양광발전시스템 고조파 영향 검토)

  • Lee, Sang-Min;Jung, Hyong-Mo;Yu, Gwon-Jong;Lee, Kang-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

Comparative Assessment of Wind Resources Between West Offshore and Onshore Regions in Korea (서해상과 연안지역의 풍력기상자원 비교평가)

  • Kim, Dae-Young;Jeong, Hyeong-Se;Kim, Yeon-Hee;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Characteristics of wind resources of offshore and coastal regions were compared using wind data obtained from HeMOSU-1 (Herald of Meteorological and Oceanographic Special Unit-1) meteorological mast located at Southwestern Sea, and ground-based LiDAR (Light Detection And Ranging) at Gochang observation site near it. The analysis includes comparison of basic wind statistics such as mean wind speed, wind direction, power law exponent and their temporal variability as well as site assessment items for the wind power plant such as turbulence intensity and wind power density at the two observation sites. It was found that the wind at HeMOSU-1 site has lower diurnal and seasonal variability than that at Gochang site, which lead to smaller turbulence intensity. Overall, the results of the comparative analysis show that the wind resource at HeMOSU-1 site located offshore has more favorable condition for wind power generation than the wind resource at Gochang which shows nature of coastal area.

Measurement and Analysis of Wind Energy Potential in Kokunsando of Saemankeum (새만금 고군산군도의 풍자원 측정 및 분석)

  • Shim, Ae-Ri;Choi, Yeon-Sung;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.51-58
    • /
    • 2011
  • Saemankeum is well known for its high speed wind, and it is known that the blueprint of a future city around Saemankeum, including new industrial complex, has been planned. As a result, large-scale offshore wind farm, on the basis of the measurement of wind resource for a long time, can be considered, so that generated electricity can be used to meet the energy demand near the wind farm. Wind speed in Kokunsando of Saemankeum is measured and analyzed with its statistical distribution and wind directions. The probability of wind power resource over Kokunsando of Saemangeum is reviewed with the measured data in one island of Kokunsando. According to measured data, the shape and scale factor of Weibull distribution of wind speed are obtained, and then power density is analyzed as well. Through this study, it is clear that the Saemangeum area has a fluent and abundant wind power source to develop the wind farm in Korea.

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.