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ABSTRACT

In this paper, a novel method for wind speed estimation in
wind power generation systems is presented. The proposed
algorithm is based on estimating the wind speed using
Support-Vector-Machines for regression (SVR). The wind
speed is estimated using the generator power-speed
characteristics as a set of training vectors. SVR is trained
off-line to predict a continuos-valued function between the
system’s inputs and wind speed value. The predicted
off-line function as well as the instantaneous generator
power and speed are then used to determine the unknown
winds speed on-line. The simulation results show that SVR
can define the corresponding wind speed rapidly and
accurately to determine the optimum generator speed
reference for maximum power point tracking.

1. Introduction

Variable speed operation for wind turbine is desirable
because of its characteristic to achieve maximum power
conversion efficiency at all wind speeds. A vector-controlled
induction generator is a good candidate for variable-speed
wind turbine system [1]. For maximum power capture, it is
advantageous to control the rotational speed of the
turbine/generator according to variable wind velocities [2],
[3]. The optimal tip~speed ratio (TSR) method is being used
for the practical system where both wind speed and turbine
speed are needed [4].

Most turbine controllers employ anemometers to measure
wind speed in order to derive the desired shaft speed to
vary the generator speed In most cases, a number of
anemometers at some distance away from and surrounding
the wind turbine are required to provide adequate
information. These mechanical sensors increase the cost and
reduce the reliability of the overall system [5].

In this paper a novel implementation for SVR is
proposed to predict the wind speed of a vector controlled
voltage ‘source inverter induction generator for wind power
generation system. In this method, SVR estimates a
continuous—valued function that plots the fundamental
relation between the giveninputs, which are the generator
power and speed, and its corresponding output wind speed
based on the training data. This function then is used to
predict outputs for given inputs that were not included in
the training set. The estimated wind speed is then used to
calculate the optimum generator reference speed based on
the optimal tip-speed ratio. Simulation results are presented

to validate the proposed control algorithm.
2. Wind power generation system

The power captured by the wind turbine may be written
as [6].

Pm,"—“ 9 pIIRZUaC,(A) (1)

To fully utilize the wind energy, C, should be maintained
at Cymy Which is determined from the blade design. Then,
from (1),

P =5 1RCy @

The reference speed of the generator is determined from (2)
as

. A
@="p'v )

Once the wind velocity v is determined, the reference
speed for extracting the maximum power point, shown in
Fig. 1, is obtained from (3).

3. Support vector machines for regression

A regression method is an algorithm that estimates an
unknown mapping between a system’s inputs and outputs
from the available data or training data. Once such a
relation has been accurately estimated, it can be used for
prediction of system outputs from the input values. The goal
of regression is to select a function which approximates
best the system’s response.

The generic SVR estimating function takes the form [7]

A0 =(w.Nx)+b 4
where the dot denotes the inner product, wCR " b6CR
and @ denotes a non-linear transformation from R "
space to high dimensional space. The goal is to find the
value of x and b such that values of can be determined by
minimizing the regression risk as

n
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i=1,2,3.....n &,£20 ®
where JT(.) is a cost functior_x and C is a constant
determining the trade-off between minimizing training errors
and minimizing the model complexity term | w || 2. If C
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Fig. 2 A feature map from input to higher
dimensional feature space

goes to infinitely large, SVR would not allow the occurrence
of any error and result in a complex model, whereas when
C goes to zero, the result would tolerate a large amount of
errors and the model would be less complex. Everything

above € is captured in slack variables £ 5:' , which are
introduced to accommodate error on the input training set.

The optimization problem in (6) can be transformed into
the dual problem, and its solution is given by

ﬂx>=z"xa,.—a:.>.(axx ). 0(x))+b

sub]ectto 0<a,<C, 0<a’<C )]
In (7) the dot product can be replaced with Kernel

function k(x i x) known as the kerel function. Kernel
functions enable the dot product to be performed in
high-dimensional feature space using low dimensional space
data input without knowing the transformation @ as shown
in Fig. 2. Using a Kemel function, the required decision
function will be

)= 3(a,—~a).Kix ) +b o

4. Wind speed estimatioh using SVR

To apply SVR to estimate the wind speed, the training
data for inputs and outputs and Kemel function should be
firstly specified. In this model, SVR inputs are the turbine
power and speed and the output is the estimated wind
speed. The power-speed characteristics at different wind
speeds can be used as a training data and Radial Basis
Function (RBF) is used as Kemel function. Training of SVR
involves the off-line adjustment (training) of Lagrange

multipliers and bias 2 ; and b in (8), respectively.
During the off-line training, Kernel polynomial Ax;x ;)
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Fig. 3 Flowchart of wind speed estimation using SVR

is calculated for all support vectors. Lagrange Multipliers

@ ;—a’; are then determined to minimize the quadratic form
9):

W, a)= 3 (a;-
- Z'.y {la,—a )+

a'})(aj—a:-)K(x 2%}
Z(a '—a?)

n

HNa;—aD=0,a;a:<[0,C]

subjectto 5 . 9
Only the non-zero values of the Lagrange multipliers

a;’_a”:‘ are useful in forecasting the regression line and
are known as support vectors. Using Kemel polynomial

Kx;x;) and Lagrange multipliers @ ;— @’ the bias b
can be computed as follow.

b=mear( Sy —(a,—a DK~}

In order to solve this problem, one has to choose the

parameters C and the value of & Parameters C and & are
usually selected by users based on a prior knowledge and/or
user expertise.

Now, all the parameters in (8) are computed in advance

off-line. Hence, (8) is used on-line for any input x (wind
speed) to compute the output A x)(optimum d-axis current)
as shown in Fig. 3.

5 Simulation results -

The simulation study have been built in a reduced-scale
using Matlab/Simulink. The squirrel cage induction generator
output terminals are connected to the utility grid through
back-to-back converters. In order to estimate the wind
speed, SVR algorithm for was implemented. The generator
controller is based on a conventional field-oriented controller,
where the generator flux current is maintained constant and
equal to the rated value. The speed control loop generates
the gq-axis current component to control the generator torque
and speed at different wind speed.

In SVR, the off-line training step is performed to get
Lagrange multipliers and bias values, .and then the SVR
model is available for the on-line mode. Equation (9) is
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used to estimate the wind speed value, while (3) is used to
calculate the reference generator speed. The generator
reference speed is calculated to extract the maximum power
from the wind source.

Figure 4 shows the simulation results of wind speed
estimation. It is noticeable that the estimated wind speed
has a slightly different from the real value due to the
trade-off between the minimizing error and the model
complexity. The SVR estimation performance for wide range
wind speed is shown in Fig. 5. The regression idea is to
find a function which fit the observations, so the
constructed function fits the observation perfectly from 7-10
[m/s).

Fig. 6(a) shows the output power corresponding to the
maximumn at the given wind speed. For each wind speed the
rotational reference speed, Fig. 6(b), is adjusted to the value
which gives the maximum power. The generator d-axis
current is adjusted to its rated value while the g-axis
current varies according to the wind speed. The generator
torque is according to the g-axis cwrrent varation as the
d-axis current is constant.

6. Conclusions

In this paper, A new support vector regression algorithm
to estimate the wind speed value based on SVR. An off-line
training was performed to estimate a continuos function that
plots the fundamental relation between the given inputs,
which are the generator power and speed, and its
corresponding output wind speed based on the training data.
The estimated function is then used on-line to determine
the wind speed for given inputs that were not included in
the training set. The presented algorithm shows a good
performance in both steady state and transient operation.
This algorithm can estimate the wind speed with a slight
error even if the wind speed increases or decreases. SVR
algorithm featured an excellent tracing for the real value. It
is important to mention that SV regression models deserve
to be used in control applications or short-term prediction,
where they can advantageously replace traditional
techniques. Matlab/Simulink has verified that the proposed
algorithm is effective and advantageous for wind speed
estimation either at constant or continuos variable speed.
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