• 제목/요약/키워드: Wind Fence

검색결과 42건 처리시간 0.03초

공력 저항 측정기를 이용한 방풍펜스 방진막의 공기 투과 저항력 측정 (Measurement of Aerodynamic Properties of Screens for Windbreak Fence using the Apparatus for Testing Screens)

  • 김락우;이인복;홍세운;황현섭;손영환;김태완;김민영;송인홍
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.145-154
    • /
    • 2013
  • Recently, damage occurrence by wind erosion has been increasing in society. In times past, such problems only took place in desert area ; however, in recent years, the wind erosion problem is spreading out to agricultural land. Wind erosion in agricultural land can cause loss of loam soils, the disturbance of the photosynthesis of the crop fields and serious economic losses. To overcome the mentioned problems, installation of windbreak fence can be recommended which function as disturbing strong wind and wind erosion. However, there is still no proper guideline to install the windbreak fence and the installation used to rely on the intuition of the workers due to the lack of related studies. Therefore, this study measured the aerodynamic resistance of screens of the windbreak fence using the apparatus for testing screens. The apparatus for testing screens was designed to measure pressure loss around the screen. Measured pressure loss by wall friction compensated for pressure loss to calculate the aerodynamic resistance of screens. The result of pressure loss by regression analysis derived the aerodynamic coefficient of Darcy-Forchheimer equation and power law equation. The aerodynamic resistance was constant regardless of the overlapped shape when the screen was overlapped into several layers. Increasing the number of layers of the screen, internal resistance increased significantly more, and pressure loss caused by the screen also increased linearly when the wind speed was certain conditions, but permeability had no tendency. In the future, the results of this study will be applied to the computational fluid dynamics simulation. The simulation models will be also validated in advance by wind tunnel experiments. It will provide standard of a design for constructing windbreak fence.

Actuator Disk Model 기반의 로터 해석자를 사용한 방풍 구조물 내부의 로터 성능 예측 (The Performance Estimation of Rotor in Wind Fence by Rotor Analysis Solver based on Actuator Disk Model)

  • 김태우;오세종;강희정;이관중
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.429-439
    • /
    • 2013
  • 본 연구에서는 로터 성능 해석을 위한 로터 성능 해석자를 개발하고 이를 사용하여 방풍 구조물 내부의 로터 성능 해석을 수행하였다. 로터 성능 해석자는 깃요소 이론 기반의 actuator disk model을 사용한 해석자를 사용하였다. 또한, 주변의 구조물로 인한 로터 하중의 비대칭성을 고려하기 위해 깃요소 이론에서 블레이드의 flapping 운동에 대한 해석을 수행하여 유효받음각 계산에 적용하였다. 개발된 해석자를 사용하여 바닥면과 벽면에 의한 로터 성능 변화에 관한 연구와 비교 검증을 수행하였다. 방풍 구조물 형상에 따른 로터 성능 해석을 통해 방풍 구조물에 의한 로터 성능 감소 현상을 확인하였다. 이를 통해 방풍 구조물이 없는 경우 대비 95% 이상의 로터 성능 비를 가지는 방풍 구조물의 유출입덕트 면적을 제안하였다.

방풍펜스가 후방에 놓인 야적모래입자의 비산에 미치는 영향에 관한 연구 (Shelter Effect of Porous Fences on the Saltation of Sand Particles in an Atmospheric Boundary Layer)

  • 박기철;이상준
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1175-1184
    • /
    • 2000
  • Effects of porous wind fences on the wind erosion of particles from a triangular sand pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Flow visualization was carried out to investigate the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the particle size, fence porosity $\varepsilon$ and the height of sand pile. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity $\varepsilon$=30% was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles. With increasing the sand particle diamter, the threshold velocity was also increased. When the height of sand pile is lower than the fence height, threshold velocity is enhanced.

원형방풍팬스를 이용한 저층건물의 풍압저감을 위한 연구 (The Study on the Decrease of Pressure of Low-rise Building using Circle Porosity Fence)

  • 전종길;김성현;유장열;유기표;김영문
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.111-115
    • /
    • 2006
  • 방풍팬스의 설치에 의한 저층건물 주변의 풍압특성을 분석하기 위하여 풍압실험을 실시하였다. 방풍팬스의 다공율은 0%와 20%을 중심으로 하였다. 방풍팬스와 저층건물의 거리는 1H-9H까지 범위안에서 측정을 하였다. 사용된 풍속은 6m/s로 일정하게 하였다. 저층건물의 측압공 위치는 정면과 측면 후면을 중심으로 총 54개를 측정하였다. 분석결과 다공률 20%일때는 측정거리 1H-3H일 때 다공률 40%일 때는 측정거리 4H-6H일 때 가장 효과적이었다.

  • PDF

GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구 (A Study on the Effects of Wind Fence on the Dispersion of the Particles Emitted from the Construction Site Using GIS and a CFD Model)

  • 김동주;왕장운;박수진;김재진
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.763-775
    • /
    • 2018
  • 본 연구에서는 지리정보시스템(GIS)자료와 전산유체역학(CFD) 모델을 사용하여 방풍벽이 건물 밀집 지역에 위치한 공사 지역에서 발생하는 대기오염물질의 확산에 미치는 영향에 대해 분석하였다. 부산 ASOS에서 10년 동안 관측된 풍속을 평균하여 기준 고도(지상 10 m)에서의 유입류로 사용하였다. 수치 실험은 방풍벽 건설 전과 5 m 및 10 m 높이의 방풍벽을 건설한 후에 대해 16 방위 풍향을 유입류로 진행하였고, 부산 ASOS에서 높은 빈도를 나타낸 북동풍과 남남서풍에 대한 상세 흐름을 분석하였다. 북동풍에서는 북동쪽에서 불어오는 흐름에 의해 비산 먼지가 확산되어 공사 지역 내부에 위치한 감천초등학교에서 대기오염물질 농도가 높게 나타났다. 5 m 높이의 방풍벽을 설치했을 때는 방풍벽 설치 전에 비해 풍속이 조금 감소했고 비산 먼지의 확산이 줄었다. 10 m 높이의 방풍벽을 설치한 경우, 초등학교에서의 평균 대기오염물질 농도는 37% 감소하였다. 남남서풍 유입류에서는 지형과 건물의 영향으로 공사 지역에서 복잡한 흐름 패턴이 형성되었다. 남쪽 공사 지역에서는 비산 먼지가 정체되어 농도가 높게 나타난 반면, 초등학교는 북풍의 흐름에 의해 대기오염물질 농도가 높게 나타났다. 방풍벽 건설 후에는 공사 지역 내부에서 풍속이 감소하면서 공사장 내부 농도는 높아졌지만, 초등학교에서의 농도는 감소했다.

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.

다공성 방풍벽 뒤에 놓인 삼각 프리즘 주위 유동의 PTV 속도장 측정 (PTV velocity field measurements of flow around a triangular prism located behind a porous fence)

  • 김형범;이상준
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.708-715
    • /
    • 1998
  • The shelter effect of a porous wind fence on a triangular prism was experimentally investigated in a circulating water channel. A porous fence of porosity .epsilon.=38.5% was installed in front of the prism model. The fence and prism model were embedded in a turbulent boundary layer. The instantaneous velocity fields around the fence and prism model were measured by using the instantaneous velocity fields around the fence and prism model were measured by using the 2-frame PTV(Particle Tracking Velocimetry) system. By installing the fence in front of the prism, the recirculation flow region decreases compared with that of no fence case. The porous fence also decreases the mean velocity, turbulent intensity and turbulent kinetic energy around the prism. Especially, at the top of the prism, the turbulent kinetic energy is about half of that without the fence.

Effect of hanging-type sand fence on characteristics of wind-sand flow fields

  • Cheng, Jian-jun;Lei, Jia-qiang;Li, Sheng-yu;Wang, Hai-feng
    • Wind and Structures
    • /
    • 제22권5호
    • /
    • pp.555-571
    • /
    • 2016
  • A hanging-type sand-retaining wall is a very common sand-blocking fence structure used to prevent sand movement. This type of wall is widely used along the Qinghai-Tibet and Gobi desert railways in Xinjiang, Western China. To analyze the characteristics of wind-sand flow fields under the effect of such a sand fence structure, a wind tunnel test and a field test were carried out. The wind tunnel test showed the zoning characteristics of the flow fields under the effect of the hanging-type sand-retaining wall, and the field test provided the sediment transport data for effective wind-proof interval and the sand resistance data in the front and behind the sand-retaining wall. The consistency of the wind-sand flow fields with the spatial distribution characteristic of wind-carried sand motion was verified by the correspondences of the acceleration zone in the flow field and the negative elevation points of the percentage variations of the sand collection rate. The spatial distribution characteristic of the field sand collection data further showed the spatial structural characteristic of the sandy air currents under the action of the hanging-type sand-retaining wall and the sand resistance characteristic of the sand-retaining wall. This systematic study on the wind-sand flow fields under the control of the hanging-type sand-retaining wall provides a theoretical basis for the rational layout of sand control engineering systems and the efficient utilization of a hanging-type sand-retaining wall.

방풍망 효과에 대한 풍동 시뮬레이션 (Wind-Tunnel Simulation on the Wind Fence Effect)

  • 강건
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.20-26
    • /
    • 1998
  • In establishing artificial fences in a certain locality, type of its area or wind blown against them from the front side is primarily considered. Researchers on fences also concentrate on upstream, wand blown against them from the front side In 90$^{\circ}$ angle. In this research, simulations were carried out on the direction of wind changed by each season, and regardless of seasonal wind, on the fences effect of wind direction on fences, throu호 an atmospheric boondary layer wind tunnel. When I compared the velocity distribution of upstream against the fences in 90$^{\circ}$ angle with that of 75$^{\circ}$, 60$^{\circ}$, and 45$^{\circ}$ respectively, the velocity distribution at downstream of the latter cases generally surpassed that of the former one.

  • PDF

스마트 무인기에 Wingtip Fence 적용 (Application of Wingtip Fence on Smart Un-manned Aerial Vehicle(SUAV))

  • 정진덕;최성욱;조태환
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.810-815
    • /
    • 2008
  • To enhance aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV) during the transition period, wingtip fence is attached at the end of wing. The application of wingtip fence is to reduce the effect of the separated flow caused by the nacelle on the wing especially when the tilting angle of nacelle is more than 30 degrees. To compare the effect of with and without wingtip fence, flow visualization and measurement of the aerodynamic coefficients using the pyramidal type external balance are done. Result of forces and moments measurement shows that the slope of lift coefficient is increased 18% and rolling moment of SUAV especially 60 & 90-degree tilting is changed in favorable manners with wingtip fence.