• Title/Summary/Keyword: Winch

Search Result 125, Processing Time 0.047 seconds

Development of the Pin Type Load-cell Using Strain Gauge (Strain Gauge를 이용한 핀형 로드셀 개발)

  • Lee, Dong-Wook;Park, Min-Hyuk;Lee, Gye-Gaong;Kim, In-Hwan;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2014
  • A pin-type load-cell which uses shear-type strain gauges was developed to measure the tension of a wire in a winch. A finite element analysis was performed to determine the locations of the strain gauges. All of the shear-type strain gauges were attached onto parts that undergo regularly shear stress distributions. A Wheatstone bridge circuit was used to connect each of the gauges and to measure the strains. Linearity within the 5% error range was noted when testing the pin-type load-cell.

A Study on Heuristic Berthing System Design with Winch and Damper Assistance

  • Kim, Young-Bok;Kim, Chang-Woo;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.20-27
    • /
    • 2018
  • Vessel maneuvering problem in the harbor area is generating considerable interests in terms of marine cybernetics. In this sense, the vessel is operated and moves at ultimately low or zero speed in shallow water area. So the vessel is usually aided by the cooperation with thrusters, main propulsion system, tugboats and pilots, etc. In this paper, we suggest a new vessel berthing technique using dampers and winches as a solution for excessively complicate and dangerous berthing work. In the proposed berthing method, in order to manipulate the actuators (winches and dampers), a simple and heuristic control strategy is applied for a basic experiment. Finally, experiments are conducted to verify the effectiveness of the proposed automatic vessel berthing strategy based on the heuristic control method.

A Study on the Development of Dynamic Positioning System for Barge Type Surface Vessels (Barge 형 수상선의 DP(Dynamic Positioning) System 개발에 관한 연구)

  • Bui, Van-Phuoc;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the authors propose a new approach to control a barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. However sometimes the thrust systems are installed on it, and in general the rope control by mooring winch system is used. It may be difficult to compare the control performances of two types. If we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a DPS design problem which can be extended to the many application fields. The goal of this paper is twofold. First, the sliding mode controller (SMC) for positioning the our vessel is proposed. Especially, in this paper, a robust stability condition is given based on descriptor system representation. In the result, the sliding mode control law guarantees to keep the vessel in the defined area in the presence of environmental disturbances. And second, the thrust allocation problem is solved by using redistributed pseudo-inverse (RPI) algorithm to determine the thrust force and direction of each individual actuator. The proposed approach has been simulated with a supply vessel model and found work well.

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

Surveying for Pig House Facilities of Pig Farms by Holding Scale (양돈농가의 사육규모별 축사시설 분석)

  • Seo, K.W.;Min, B.R.;Choi, H.C.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2009
  • In this research pig house facilities what are 3,029 houses hold over 1000 heads were surveyed by scale and province. Full-time farms hold over 1000 heads breed total 7,229,892 heads. And farms breed 2,386.9 heads averagely. Pig houses were constructed august 1995 averagely. Each of houses have $3,017.2\;m^2$ scale. The construction type of pig house was winch-curtain type 77.2% which was most popular, confined type 51.3%, litter type 7.4% and loft type 4.6%. The winch-curtain type was popular than windowless type in pig farms which have 1,000-1,999 heads. But pig house construction type which have more than over 10,000 heads was windowless type more than winch-curtain type. Manure removing type was slurry 72.3% and scraper 38.5% in farms which have 1,000-1,999 heads. Manure removing type was slurry 83.3% in farms which have over 10,000 heads. Proportion of roof type of pig house was slate 51.2%, panel 46.1%. But in middle or small farms, slate type was only 25.0%. Proportion of wall type of pig house was 41.9%, block 21.9%, concrete 7.6%, winch-curtain 6.3%, and bnck 5.9%. Ventilation type of pig house was natural winch 46.1%, mechanical windowless 69.8% and mixed type 53.1%. So, mechanical windowless type was popular than natural winch type. Especially the farm scale is bigger the mechanical widowless type was more. Utilization period of pig house was 8.1 years about automatic feeder, 8.3 years about waterer, 8.2 years about electric facilities and 9.0 years about floor material. Thus, almost of facilities were used at least 8 years.

  • PDF

Ship s Maneuvering and Winch Control System with Voice Instruction Based Learning (음성지시에 의한 선박 조종 및 윈치 제어 시스템)

  • Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2002
  • In this paper, we propose system that apply VIBL method to add speech recognition to LIBL method based on human s studying method to use natural language to steering system of ship, MERCS and winch appliances and use VIBL method to alternate process that linguistic instruction such as officer s steering instruction is achieved via ableman and control steering gear, MERCS and winch appliances. By specific method of study, ableman s suitable steering manufacturing model embodies intelligent steering gear controlling system that embody and language direction base studying method to present proper meaning element and evaluation rule to steering system of ship apply and respond more efficiently on voice instruction of commander using fuzzy inference rule. Also we embody system that recognize voice direction of commander and control MERCS and winch appliances. We embodied steering manufacturing model based on ableman s experience and presented rudder angle for intelligent steering system, compass bearing arrival time, evaluation rule to propose meaning element of stationary state and correct steerman manufacturing model rule using technique to recognize voice instruction of commander and change to text and fuzzy inference. Also we apply VIBL method to speech recognition ship control simulator and confirmed the effectiveness.

Turn-Tree Derrick (턴트리 데릭크)

  • Y.J.,Ha
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.59-63
    • /
    • 1981
  • With substitution with a delicate turn-tree instead of a long permanent cross-tree that is usally located on the derrick post, it is possible to get a large working range of the slewing angle 240 degree and also to decrease the slewing time of the derrick boom, comparing to the exisiting cargo gear system which has the same capacity of slewing winch.

  • PDF

A Three-unit Modular Climbing Robot for Overcoming Obstacles on the Facade of Buildings (건물 외벽 장애물 극복을 위한 3단 모듈형 승월로봇)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.114-123
    • /
    • 2017
  • This paper introduces a novel obstacle-climbing robot that moves on the facade of buildings and its climbing mechanism. A winch system set on the top of the building makes the vertical motion of the robot while it climbs obstacles that protrude from the wall surface. The obstacle-climbing robot suggested in this research is composed of a main platform and three modular climbing units. Various sensors installed on each climbing unit detect the obstacles, and the robot controller coordinates the three units and the winch to climb the obstacles using the obstacle-climbing mechanism. To evaluate the performance of the developed robot prototype, a test bed, which consists of an artificial wall and an obstacle, was manufactured. The obstacle size and the time required to climb the obstacle were selected as the performance indices, and extensive experiments were carried out. As a result, it was confirmed that the obstacle-climbing robot can climb various-sized obstacles with a reasonable speed while it moves on the wall surface.