• 제목/요약/키워드: Wigner_Ville

검색결과 51건 처리시간 0.032초

실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링 (Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head)

  • 서종철;김상환;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징 (Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform)

  • 장문광;조춘식
    • 한국전자파학회논문지
    • /
    • 제26권7호
    • /
    • pp.656-665
    • /
    • 2015
  • 본 논문에서는 시간-주파수 변환에 요동보상을 적용한 UWB 레이다 Bistatic ISAR (Bistatic Inverse Synthetic Aperture Radar: B-ISAR) 이미징에 적용하여 레이다 이미징의 선명도와 품질을 개선하였다. UWB 레이다를 사용하여 제안하는 시간-주파수 알고리즘을 검증하였으며, 이를 위하여 B-ISAR 알고리즘 절차, 시간-주파수 변환과 요동보상 개선 등 필요한 이론적 근거를 제시하였다. B-ISAR 이미징 알고리즘으로 이미지를 생성하였으며, UWB 바이스테틱 ISAR 이미징 생성시 요동보상을 적용한 시간-주파수 변환 기법인 STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), WVD(Wigner-Ville distribution) 방식을 차례대로 구현하였다. 그리고 STFT, GWT와 WVD 알고리즘을 이용하여 B-ISAR 이미징 알고리즘의 성능을 비교하였으며, 그 결과 WVD가 다른 방식들에 비하여 영상이 선명하고, 퍼짐 현상이 줄어듦을 알 수 있었다.

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.

시주파수 표현에 의한 시변파워스펙트럼 추정 알고리즘에 관한 연구 (A STUDY ON THE TIME-VARYING POWER SPECTRUM ESTIMATION ALGORITHM USING TIME-FREQUENCY REPRESENTATION)

  • 이정환;이준영;이동준;김한수;전우철;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.991-993
    • /
    • 1999
  • This study proposed a new algorithm to assess autonomic function activity using Time-Frequency Representation(TFR). TFR is a way of describing the time-valiant energy of a signal. A discrete Wigner representation that is capable of filtering out any cross terms occuring in the Wigner-Ville Distribution(WVD) is used for time-variant energy distribution of heart rate variability(HRV) signals. And the marginal condition are evaluated to estimate power spectrum of HRV signals. The proposed algorithm showed that estimated power spectrum of HRV signals well describe the autonomic nerve system function and also showed the dynamics of autonomic nervous system response.

  • PDF

금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구 (Application of Time-Frequency Analysis Methods to Loose Part Impact Signal)

  • 박진호;이정한;김봉수;박기용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

Simulation and Experiment of Distorted LFM Signals in Shallow Water Environment

  • Na, Young-Nam;Jurng, Mun-Sub;Shim, Tae-Bo;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.16-25
    • /
    • 1998
  • This paper attempts to examine the characteristics of underwater acoustic signals distorted in shallow water environments. Time signals are simulated using an acoustic model that employs the Fourier synthesis scheme. An acoustic experiment was conducted in the shallow sea near Pohang, Korea, where water depth is about 60m. The environment in the simulation is set up so that it approximates the experimental condition, which can be regarded as range-independent. The signal is LFM(linar frequency modulated) type centered on one of the four frequencies 200, 400, 600 and 800Hz, each being swept up or down with the bandwidth of 100Hz. To analyze the signal characteristics, the study introduces a spectrum estimation scheme, pseudo Wigner-Ville distribution (PWVD). The simulated and measured signals suffer great interference by the interaction of neighboring rays. Although there are constructive or destructive interference, the signals keep LFM characteristics well. This is thought that only a few dominant rays of small loss contribute to the receive signals in a shallow water environment.

  • PDF

지중 전력 케이블에 대한 웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법 개발 (Wavelet Transform Based Time-Frequency Domain Reflectometry for Underground Power Cable)

  • 이신호;최윤호;박진배
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2333-2338
    • /
    • 2011
  • In this paper, we develope a wavelet transform based time-frequency domain reflectometry (WTFDR) for the fault localization of underground power cable. The conventional TFDR (CTFDR) is more accurate than other reflectometries to localize the cable fault. However, the CTFDR has some weak points such as long computation time and hard implementation because of the nonlinearity of the Wigner-Ville distribution used in the CTFDR. To solve the problem, we use the complex wavelet transform (CWT) because the CWT has the linearity and the reference signal in the TFDR has a complex form. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for various fault types of the underground power cable.

비정상 AE 진동감시 신호의 에너지 분포특성과 시간-주파수 해석 (Energy Distribution Characteristics of Nonstationary Acoustic Emission Burst Signal Using Time-frequency Analysis)

  • 정태건
    • 한국소음진동공학회논문집
    • /
    • 제22권3호
    • /
    • pp.291-297
    • /
    • 2012
  • Conventional Fourier analysis can give only limited information about the dynamic characteristics of nonstationary signals. Instead, time-frequency analysis is widely used to investigate the nonstationary signal in detail. Several time-frequency analysis methods are compared for a typical acoustic emission burst generated during the impact between a ferrite ceramic and aluminum plate. This AE burst is inherently nonstationary and random containing many frequency contents, which leads to severe interference between cross terms in bilinear convolution type distributions. The smoothing and reassignment processes can improve the readability and resolution of the results. Spectrogram and scalogram of the AE burst are obtained and compared to get the characteristics information. Renyi entropies are computed for various bilinear time-frequency transforms to evaluate the randomness. These bilinear transforms are reassigned by using the improved algorithm in discrete computation.

Nondestructive Evaluation for Artificial Degraded Stainless 316 Steel by Time-Frequency Analysis Method

  • Nam, Ki-Woo;Kim, Young-Un
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.87-92
    • /
    • 2001
  • In this studies, joint time-frequency analysis techniques were applied to analyze ultrasonic signals in the degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It was demonstrated that the nonstationary characteristics of ultrasonic signals could be analyzed effectively by these methods. The WVD was more effective for analyzing the attenuation and frequency characteristics of the degraded materials through ultrasonic. It is indicated that the joint time-frequency analysis, WVD method, should also be useful in evaluating various damages and defects in structural members.

  • PDF

웨이블렛을 이용한 보의 결함진단 (Damage Detection in a Beam by the Wavelet Transform)

  • 김응훈;김윤영
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.518-525
    • /
    • 2000
  • This paper presents a new wavelet-based structural diagnostic technique. A continuous Gabor wavelet transform is shown to a very effective method in detecting damage in a beam. The beam is excited by a broad-band excitation force. For satisfactory results, the selection of an optimal wavelet is very important though the wavelet transform outperforms existing techniques such as the Wigner-Ville distribution. A specific example is given in a solid circular cylinder with a small defect.