• Title/Summary/Keyword: Wigner-Ville Distribution

Search Result 48, Processing Time 0.045 seconds

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.

A STUDY ON THE TIME-VARYING POWER SPECTRUM ESTIMATION ALGORITHM USING TIME-FREQUENCY REPRESENTATION (시주파수 표현에 의한 시변파워스펙트럼 추정 알고리즘에 관한 연구)

  • Lee, Jeong-Whan;Lee, Joon-Young;Lee, Dong-Joon;Kim, Han-Soo;Jeon, Woo-Chul;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.991-993
    • /
    • 1999
  • This study proposed a new algorithm to assess autonomic function activity using Time-Frequency Representation(TFR). TFR is a way of describing the time-valiant energy of a signal. A discrete Wigner representation that is capable of filtering out any cross terms occuring in the Wigner-Ville Distribution(WVD) is used for time-variant energy distribution of heart rate variability(HRV) signals. And the marginal condition are evaluated to estimate power spectrum of HRV signals. The proposed algorithm showed that estimated power spectrum of HRV signals well describe the autonomic nerve system function and also showed the dynamics of autonomic nervous system response.

  • PDF

Application of Time-Frequency Analysis Methods to Loose Part Impact Signal (금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head (실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

Energy Distribution Characteristics of Nonstationary Acoustic Emission Burst Signal Using Time-frequency Analysis (비정상 AE 진동감시 신호의 에너지 분포특성과 시간-주파수 해석)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Conventional Fourier analysis can give only limited information about the dynamic characteristics of nonstationary signals. Instead, time-frequency analysis is widely used to investigate the nonstationary signal in detail. Several time-frequency analysis methods are compared for a typical acoustic emission burst generated during the impact between a ferrite ceramic and aluminum plate. This AE burst is inherently nonstationary and random containing many frequency contents, which leads to severe interference between cross terms in bilinear convolution type distributions. The smoothing and reassignment processes can improve the readability and resolution of the results. Spectrogram and scalogram of the AE burst are obtained and compared to get the characteristics information. Renyi entropies are computed for various bilinear time-frequency transforms to evaluate the randomness. These bilinear transforms are reassigned by using the improved algorithm in discrete computation.

Simulation and Experiment of Distorted LFM Signals in Shallow Water Environment

  • Na, Young-Nam;Jurng, Mun-Sub;Shim, Tae-Bo;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.16-25
    • /
    • 1998
  • This paper attempts to examine the characteristics of underwater acoustic signals distorted in shallow water environments. Time signals are simulated using an acoustic model that employs the Fourier synthesis scheme. An acoustic experiment was conducted in the shallow sea near Pohang, Korea, where water depth is about 60m. The environment in the simulation is set up so that it approximates the experimental condition, which can be regarded as range-independent. The signal is LFM(linar frequency modulated) type centered on one of the four frequencies 200, 400, 600 and 800Hz, each being swept up or down with the bandwidth of 100Hz. To analyze the signal characteristics, the study introduces a spectrum estimation scheme, pseudo Wigner-Ville distribution (PWVD). The simulated and measured signals suffer great interference by the interaction of neighboring rays. Although there are constructive or destructive interference, the signals keep LFM characteristics well. This is thought that only a few dominant rays of small loss contribute to the receive signals in a shallow water environment.

  • PDF

Wavelet Transform Based Time-Frequency Domain Reflectometry for Underground Power Cable (지중 전력 케이블에 대한 웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법 개발)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2333-2338
    • /
    • 2011
  • In this paper, we develope a wavelet transform based time-frequency domain reflectometry (WTFDR) for the fault localization of underground power cable. The conventional TFDR (CTFDR) is more accurate than other reflectometries to localize the cable fault. However, the CTFDR has some weak points such as long computation time and hard implementation because of the nonlinearity of the Wigner-Ville distribution used in the CTFDR. To solve the problem, we use the complex wavelet transform (CWT) because the CWT has the linearity and the reference signal in the TFDR has a complex form. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for various fault types of the underground power cable.

Nondestructive Evaluation for Artificial Degraded Stainless 316 Steel by Time-Frequency Analysis Method

  • Nam, Ki-Woo;Kim, Young-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2001
  • In this studies, joint time-frequency analysis techniques were applied to analyze ultrasonic signals in the degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It was demonstrated that the nonstationary characteristics of ultrasonic signals could be analyzed effectively by these methods. The WVD was more effective for analyzing the attenuation and frequency characteristics of the degraded materials through ultrasonic. It is indicated that the joint time-frequency analysis, WVD method, should also be useful in evaluating various damages and defects in structural members.

  • PDF

Damage Detection in a Beam by the Wavelet Transform (웨이블렛을 이용한 보의 결함진단)

  • Kim, Eung-Hun;Kim, Yun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.518-525
    • /
    • 2000
  • This paper presents a new wavelet-based structural diagnostic technique. A continuous Gabor wavelet transform is shown to a very effective method in detecting damage in a beam. The beam is excited by a broad-band excitation force. For satisfactory results, the selection of an optimal wavelet is very important though the wavelet transform outperforms existing techniques such as the Wigner-Ville distribution. A specific example is given in a solid circular cylinder with a small defect.

Time-Frequency Analysis of Broadband Acoustic Scattering from Chub Mackerel Scomber japonicus, Goldeye Rockfish Sebastes thompsoni, and Fat Greenling Hexagrammos otakii (고등어(Scomber japonicus), 불볼락(Sebastes thompsoni) 및 쥐노래미(Hexagrammos otakii)에 의한 광대역 음향산란신호의 시간-주파수 분석)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.221-232
    • /
    • 2015
  • Broadband echoes measured in live chub mackerel Scomber japonicus, goldeye rockfish Sebastes thompsoni, and fat greenling Hexagrammos otakii with different morphologies and internal characteristics were analyzed in time and frequency domains to understand the species-specific echo feature characteristics for classifying fish species. The mean echo image for each time-frequency representation dataset obtained as a function of orientation angle was extracted to mitigate the effect of fish orientation on acoustic scattering. The joint time-frequency content of the broadband echo signals was obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The SPWVDs were analyzed for each echo signature of the three fish species. The results show that the time-frequency analysis provided species-specific echo structure patterns and metrics of the broadband acoustic signals to facilitate fish species classification.