• Title/Summary/Keyword: Wiener noise

Search Result 146, Processing Time 0.024 seconds

A new approach to enhancement of ground penetrating radar target signals by pulse compression (파형압축 기법에 의한 GPR탐사 반사신호 분해능 향상을 위한 새로운 접근)

  • Gaballah, Mahmoud;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2009
  • Ground penetrating radar (GPR) is an effective tool for detecting shallow subsurface targets. In many GPR applications, these targets are veiled by the strong waves reflected from the ground surface, so that we need to apply a signal processing technique to separate the target signal from such strong signals. A pulse-compression technique is used in this research to compress the signal width so that it can be separated out from the strong contaminated clutter signals. This work introduces a filter algorithm to carry out pulse compression for GPR data, using a Wiener filtering technique. The filter is applied to synthetic and field GPR data acquired over a buried pipe. The discrimination method uses both the reflected signal from the target and the strong ground surface reflection as a reference signal for pulse compression. For a pulse-compression filter, reference signal selection is an important issue, because as the signal width is compressed the noise level will blow up, especially if the signal-to-noise ratio of the reference signal is low. Analysis of the results obtained from simulated and field GPR data indicates a significant improvement in the GPR image, good discrimination between the target reflection and the ground surface reflection, and better performance with reliable separation between them. However, at the same time the noise level slightly increases in field data, due to the wide bandwidth of the reference signal, which includes the higher-frequency components of noise. Using the ground-surface reflection as a reference signal we found that the pulse width could be compressed and the subsurface target reflection could be enhanced.

The Effects of Total Variation (TV) Technique for Noise Reduction in Radio-Magnetic X-ray Image: Quantitative Study

  • Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Park, Jongwoon;Lee, Chang Lae;Lee, Youngjin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.593-598
    • /
    • 2016
  • In order to reduce the amount of noise component in X-ray imaging system, various reduction techniques were frequently used in the field of diagnostic imaging. Although the previous techniques -such as median, Wiener filters and Anscombe noise reduction technique - were able to reduce the noise, the edge information was still damaged. In order to cope with this problem, total variation (TV) noise reduction technique has been developed and researched. The purpose of this study was to evaluate and compare the image quality using normalized noise power spectrum (NNPS) and contrast-to-noise ratio (CNR) through simulations and experiments with respect to the above-mentioned noise reduction techniques. As a result, not only lowest NNPS value but also highest CNR values were acquired using a TV noise reduction technique. In conclusion, the results demonstrated that TV noise reduction technique is proved as the most practical method to ensure accurate denoising in X-ray imaging system.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

Hand-held Multimedia Device Identification Based on Audio Source (음원을 이용한 멀티미디어 휴대용 단말장치 판별)

  • Lee, Myung Hwan;Jang, Tae Ung;Moon, Chang Bae;Kim, Byeong Man;Oh, Duk-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • Thanks to the development of diverse audio editing Technology, audio file can be easily revised. As a result, diverse social problems like forgery may be caused. Digital forensic technology is actively studied to solve these problems. In this paper, a hand-held device identification method, an area of digital forensic technology is proposed. It uses the noise features of devices caused by the design and the integrated circuit of each device but cannot be identified by the audience. Wiener filter is used to get the noise sounds of devices and their acoustic features are extracted via MIRtoolbox and then they are trained by multi-layer neural network. To evaluate the proposed method, we use 5-fold cross-validation for the recorded data collected from 6 mobile devices. The experiments show the performance 99.9%. We also perform some experiments to observe the noise features of mobile devices are still useful after the data are uploaded to UCC. The experiments show the performance of 99.8% for UCC data.

The Effect of the Speech Enhancement Algorithm for Sensorineural Hearing Impaired Listeners

  • Kim, Dong-Wook;Lee, Young-Woo;Lee, Jong-Shill;Chee, Young-Joon;Lee, Sang-Min;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.732-743
    • /
    • 2007
  • Background noise is one of the major complaints of not only hearing impaired persons but also normal listeners. This paper describes the results of two experiments in which speech recognition performance was determined for listeners with normal hearing and sensorineural hearing loss in noise environment. First, we compared speech enhancement algorithms by evaluation speech recognition ability in various speech-to-noise ratios and types of noise. Next, speech enhancement algorithms by reducing background noise were presented and evaluated to improve speech intelligibility for sensorineural hearing impairment listeners. We tested three noise reduction methods using single-microphone, such as spectrum subtraction and companding, Wiener filter method, and maximum likelihood envelop estimation. Their responses in background noise were investigated and compared with those by the speech enhancement algorithm that presented in this paper. The methods improved speech recognition test score for the sensorineural hearing impaired listeners, but not for normal listeners. The results suggest the speech enhancement algorithm with the loudness compression can improve speech intelligibility for listeners with sensorineural hearing loss.

Substitutability of Noise Reduction Algorithm based Conventional Thresholding Technique to U-Net Model for Pancreas Segmentation (이자 분할을 위한 노이즈 제거 알고리즘 기반 기존 임계값 기법 대비 U-Net 모델의 대체 가능성)

  • Sewon Lim;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.663-670
    • /
    • 2023
  • In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.

Restoration of Chest X-ray Image Using Dual Projection Filter (이중 프로젝션 필터를 이용한 흉부 X-선 영상의 복원)

  • 이태수;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 1992
  • A new restoration method of chest X -ray image (dual project filter) was proposed to improve SNR(signal to noise ratio) characteristics. In this method, a priori Information of system and anatomical structure and statistics of projected object are used in the design of filter. Dual projection filter varies its parameters, adapting to the local regions of chest(lung region, mediasternum, subdiaphragm) and the structure of chest (bone, tissue, blood vessel, bronchia). The performance of Dual Projection Filter was 0.1-0.2dB better than Dual Sensor Wiener Filter, which was used for initial estimate of Dual Porjection Filter.

  • PDF

CAUCHY PROBLEMS FOR A PARTIAL DIFFERENTIAL EQUATION IN WHITE NOISE ANALYSIS

  • Chung, Dong-Myung;Ji, Un-Cig
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.309-318
    • /
    • 1996
  • The Gross Laplacian $\Delta_G$ was introduced by Groww for a function defined on an abstract Wiener space (H,B) [1,7]. Suppose $\varphi$ is a twice H-differentiable function defined on B such that $\varphi"(x)$ is a trace class operator of H for every x \in B.in B.

  • PDF

Speech Enhancement Using Lip Information and SFM (입술정보 및 SFM을 이용한 음성의 음질향상알고리듬)

  • Baek, Seong-Joon;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.77-84
    • /
    • 2003
  • In this research, we seek the beginning of the speech and detect the stationary speech region using lip information. Performing running average of the estimated speech signal in the stationary region, we reduce the effect of musical noise which is inherent to the conventional MlMSE (Minimum Mean Square Error) speech enhancement algorithm. In addition to it, SFM (Spectral Flatness Measure) is incorporated to reduce the speech signal estimation error due to speaking habit and some lacking lip information. The proposed algorithm with Wiener filtering shows the superior performance to the conventional methods according to MOS (Mean Opinion Score) test.

  • PDF

An Improvement of Impulse Response Estimating Method in Acoustic Rhinometer (음향 비강 측정기의 임펄스 응답 추정 방법의 개선)

  • 양진원;최민주;이용학
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.95-98
    • /
    • 2000
  • Evaluation of the acoustic nasal geometry is obtained by estimating impulse response due to the nasal geometry. Conventionally, the Wiener filtering method proposed by Hunt has been used for estimating impulse response. In this paper, we proposed the Weiner filtering method using noise-to-signal power ratio for estimating impulse response. In result, the proposed method in this paper is effective than the conventional method.

  • PDF