CAUCHY PROBLEMS FOR A PARTIAL DIFFERENTIAL EQUATION IN WHITE NOISE ANALYSIS

DONG MYUNG CHUNG AND UN CIG JI

1. Introduction

The Gross Laplacian $\Delta_{\rm G}$ was introduced by Gross for a function defined on an abstract Wiener space (H,B) [1,7]. Suppose φ is a twice H-differentiable function defined on B such that $\varphi''(x)$ is a trace class operator of H for every $x \in B$. Then the Gross Laplacian $\Delta_{\rm G} \varphi$ of φ is defined by

$$\Delta_{\mathbf{G}}\varphi(x) = trace_{H}\varphi''(x).$$

If in addition $\varphi'(x) \in B^*$, then the number operator $N\varphi$ of φ is defined by

$$N\varphi(x) = -trace_H \varphi''(x) + \langle x, \varphi'(x) \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the $B - B^*$ pairing.

In [1], Gross studied the solution of the heat equation associated with the Gross Laplacian Δ_{G} on (H, B):

$$\frac{\partial u}{\partial t}(x,t) = \frac{1}{2}\Delta_{\mathbf{G}}u(x,t), \qquad u(x,0) = f(x).$$

In [15], Piech studied the solution of the heat equation associated with the number operator N on (H, B):

$$\frac{\partial u}{\partial t}(x,t) = -Nu(x,t), \qquad u(x,0) = f(x).$$

We note that in white noise space $(S'(\mathbb{R}), \mathcal{E}, \mu)$, the white noise measure μ is supported in the space S'_p (see section 2) for any $p > \frac{1}{2}$.

Received January 5, 1995.

¹⁹⁹¹ AMS Subject Classification: 46F25, 35R15.

Key words: Gross Laplacian, number operator, Fourier transform.

Research supported by KOSEF and BSRI.

Thus $(L^2(\mathbb{R}), \mathcal{S}'_p(\mathbb{R}))$ is an abstract Wiener space. Therefore we can define $\Delta_{G}\varphi$ and $N\varphi$ for functions φ defined on $\mathcal{S}'_p(\mathbb{R})$.

In [9,10], Kuo has studied the heat equation associated with the Gross Laplacian $\Delta_{\rm G}$ in white noise analysis setting. In [5], Kang has studied the heat equation associated with the number operator N in white noise analysis setting. In this paper we will investigate the existence of a solution of the Cauchy problem associated with the operator $\Delta_{\rm G} + N$ in white noise analysis setting.

2. Preliminaries

Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of real valued rapidly decreasing smooth functions on \mathbb{R} . The dual space $\mathcal{S}'(\mathbb{R})$ of $\mathcal{S}(\mathbb{R})$ is the space of tempered distributions on \mathbb{R} . Then $\mathcal{S}(\mathbb{R}) \subset L^2(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$ is a Gel'fand triple.

Let $A = -\frac{d^2}{dt^2} + t^2 + 1$. Then A is the densely defined self-adjoint on $L^2(\mathbb{R})$ and $Ae_n = (2n+2)e_n$, where $\{e_n\}$ is an ONB of $L^2(\mathbb{R})$ defined by

$$e_n(u) = (-1)^n (\pi^{\frac{1}{2}} 2^n n!)^{-\frac{1}{2}} e^{\frac{u^2}{2}} \left[\frac{d^n}{du^n} e^{-u^2} \right].$$

For each $p \geq 0$, define

$$|f|_p = |A^p f|_0, \quad f \in L^2(\mathbb{R}),$$

where $|\cdot|_0$ is the $L^2(\mathbb{R})$ -norm. Let $\mathcal{S}_p(\mathbb{R}) = \{f \in L^2(\mathbb{R}) | |f|_p < \infty\}$. Then $\mathcal{S}_p(\mathbb{R})$ is a real separable Hilbert space with the norm $|\cdot|_p$ and the dual space $\mathcal{S}_p'(\mathbb{R})$ of $\mathcal{S}_p(\mathbb{R})$ is given by $\mathcal{S}_{-p}(\mathbb{R})$. Furthermore, we have $\mathcal{S}_q(\mathbb{R}) \subset \mathcal{S}_p(\mathbb{R})$ for p < q and

$$\mathcal{S}(\mathbb{R}) = \bigcap_{p \geq 0} \mathcal{S}_p(\mathbb{R}), \qquad \mathcal{S}'(\mathbb{R}) = \bigcup_{p > 0} \mathcal{S}_{-p}(\mathbb{R}).$$

Since $\mathcal{S}(\mathbb{R})$ is a nuclear space, by the Bochner-Minlos theorem there exists a unique probability measure μ on σ -algebra \mathcal{B} of Borel subsets of $\mathcal{S}'(\mathbb{R})$ such that

$$\int_{\mathcal{S}'(\mathbb{R})} \mathrm{e}^{i\langle x,\xi\rangle} d\mu(x) = \mathrm{e}^{-\frac{1}{2}|\xi|_0^2}, \quad \xi \in \mathcal{S}(\mathbb{R}),$$

where $\langle \cdot, \cdot \rangle$ is the $\mathcal{S}'(\mathbb{R}) - \mathcal{S}(\mathbb{R})$ pairing. The triple $(\mathcal{S}'(\mathbb{R}), \mathcal{B}, \mu)$ is called the white noise space.

Let (L^2) be the Hilbert space of μ -square integrable functions on the white noise space $(S'(\mathbb{R}), \mathcal{B}, \mu)$ with norm $||\cdot||_0$. By the Wiener-Itô decomposition theorem [3,14], every $\phi \in (L^2)$ admits a chaos decomposition:

$$\phi = \sum_{n=0}^{\infty} I_n(f_n),$$

where $I_n(f_n)$ denotes a multiple Itô integral of order n with the kernel $f_n \in \widehat{L}^2(\mathbb{R}^n)$ (the symmetric L^2 -space).

It is well-known (see [17]) that $I_n(f)(x) = \langle : x^{\otimes n} : , f \rangle$, where $: x^{\otimes n} :$ is the Wick ordering. Hence for each ϕ in (L^2) , we have

$$\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, f_n \rangle \quad f_n \in \widehat{L}^2(\mathbb{R}^n).$$

Moreover, we have

$$||\phi||_0^2 = \sum_{n=0}^{\infty} n! |f_n|_0^2.$$

The second quantization $\Gamma(A)$ of A is densely defined on (L^2) as follows: for $\phi \in (L^2)$ with $\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, f_n \rangle$,

$$\Gamma(A)\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, A^{\otimes n} f_n \rangle.$$

For $p \geq 0$, define

$$||\phi||_p = ||\Gamma(A)^p \phi||_0$$

and let $(S)_p = \{\phi \in (L^2); ||\phi||_p < \infty\}$. Then $(S)_p$ is a Hilbert space with the norm $||\cdot||_p$. For p < 0, we define $(S)_p$ as the completion of (L^2) with respect to $||\cdot||_p$. Then the dual space $(S)_p^*$ of $(S)_p$ is given by $(S)_{-p}$, and we have

$$(\mathcal{S})_q \subset (\mathcal{S})_p \subset (L^2) \subset (\mathcal{S})_{-p} \subset (\mathcal{S})_{-q}$$

where $q > p \ge 0$. The space (S) of test functions is the projective limit of $\{(S)_p; p \ge 0\}$. The space $(S)^*$ of generalized functions (or Hida

distributions) is the dual space of (S). Thus we have a Gel'fand triple $(S) \subset (L^2) \subset (S)^*$ and will use the symbol $\langle \langle \cdot, \cdot \rangle \rangle$ for the $(S)^*$ -(S) pairing.

Let \mathcal{G} be a continuous linear operator from (\mathcal{S}) into itself defined by

$$\mathcal{G}\phi(y) = \langle \langle : e^{-i\langle \cdot, y \rangle} :, \phi \rangle \rangle, \quad y \in E^*$$

where $: e^{-i\langle \cdot, y \rangle} : \in (\mathcal{S})^*$. Then it is known [3,12] that the adjoint \mathcal{G}^* of \mathcal{G} is the Fourier transform \mathcal{F} . For any $\phi \in (S)$ with $\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, f_n \rangle$, $f_n \in \widehat{S(\mathbb{R}^n)}$, $\mathcal{G}\phi$ has the following chaos decomposition

$$(2.1) \quad \mathcal{G}\phi(y) = \sum_{n=0}^{\infty} \langle : y^{\otimes n} :, \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!2^m} (-i)^{n+2m} \tau^{\otimes m} \hat{\otimes}_{2m} f_{n+2m} \rangle.$$

And it can be shown that $\mathcal{G}^3 = \mathcal{G}^{-1}$, and for any $\phi \in (S)$ with $\phi(y) = \sum_{n=0}^{\infty} \langle : y^{\otimes n} : , f_n \rangle$, $f_n \in \widehat{S(\mathbb{R}^n)}$, $\mathcal{G}^{-1}\phi$ is given by

$$(2.2) \ \mathcal{G}^{-1}\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!2^m} (i)^{n+2m} \tau^{\otimes m} \hat{\otimes}_{2m} f_{n+2m} \rangle,$$

where $\tau^{\otimes m} \hat{\otimes}_{2m} f_{n+2m}(u) = \int_{\mathbb{R}^m} f(t_1, t_1, t_2, t_2, \cdots, t_m, t_m, u) dt_1 \cdots dt_m, u \in \mathbb{R}^n$. It also can be shown by using the duality that for any $\Phi \in (S)^*$ with $\Phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, F_n \rangle$, $F_n \in \widehat{S'(\mathbb{R}^n)}$, $\mathcal{F}\Phi$ and $\mathcal{F}^{-1}\Phi$ are given by

(2.3)
$$\mathcal{F}\Phi(y) = \sum_{n=0}^{\infty} \langle : y^{\otimes n} :, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{(-i)^n}{m! 2^m} F_{n-2m} \hat{\otimes} \tau^{\otimes m} \rangle,$$

and

$$(2.4) \mathcal{F}^{-1}\Phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{i^n}{m! 2^m} F_{n-2m} \hat{\otimes} \tau^{\otimes m} \rangle.$$

It is known [3] that for any $\phi \in (S)$ with $\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , f_n \rangle$, $f_n \in \widehat{S(\mathbb{R}^n)}$, $\Delta_{G} \phi$ and $N \phi$ are given by

$$\Delta_{\mathbf{G}}\phi(x) = \sum_{n=0}^{\infty} (n+2)(n+1)\langle : x^{\otimes n} :, \tau \otimes_2 f_{n+2} \rangle$$

and

$$N\phi(x) = \sum_{n=0}^{\infty} n\langle : x^{\otimes n} :, f_n \rangle.$$

3. Cauchy problem associated with the operator $\Delta_G + N$

In this section we use the \mathcal{G} -and Fourier transforms to investigate the existence of a solution of the following Cauchy problems:

(3.1)
$$\frac{\partial}{\partial t}u(x,t) = -(\Delta_{\mathbf{G}} + N)u(x,t), \qquad u(x,0) = \phi(x),$$

where $\phi \in (\mathcal{S})$, and

(3.2)
$$\frac{\partial}{\partial t}u(x,t) = -(\Delta_{\mathbf{G}}^* + N)u(x,t), \qquad u(x,0) = \Phi(x),$$

where $\Phi \in (\mathcal{S})^*$ and Δ_G^* is the adjoint of Δ_G .

THEOREM 3.1. For any $\phi \in (S)$, we have

- (i) $\mathcal{G}(\Delta_{\mathrm{G}}\phi) = -\Delta_{\mathrm{G}}(\mathcal{G}\phi)$
- (ii) $\mathcal{G}(N\phi) = (\Delta_{\mathbf{G}} + N)\mathcal{G}\phi$.

Proof. (i) Let $\phi \in (S)$ be given by $\phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , f_n \rangle$. Then we have

$$\Delta_{\mathbf{G}}\phi(x) = \sum_{n=0}^{\infty} (n+1)(n+2)\langle : x^{\otimes n} :, \tau \hat{\otimes}_2 f_{n+2} \rangle.$$

Hence by (2.1), we obtain that

$$\mathcal{G}(\Delta_{\mathbf{G}}\phi)(y) = \sum_{n=0}^{\infty} \langle : y^{\otimes n} :, \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!2^m} (-i)^{n+2m} \tau^{\otimes m} \hat{\otimes}_{2m} \times \left((n+2m+1)(n+2m+2)\tau \hat{\otimes}_2 f_{n+2m+2} \right) \rangle$$

$$= -\sum_{n=0}^{\infty} (n+1)(n+2) \langle : y^{\otimes n} :, \sum_{m=0}^{\infty} \frac{(n+2m+2)!}{(n+2)!m!2^m} \times (-i)^{n+2m+2} \tau^{\otimes m+1} \hat{\otimes}_{2(m+1)}) f_{n+2m+2} \rangle$$

$$= -\Delta_{\mathbf{G}}(\mathcal{G}\phi)(x).$$

Thus we have $\mathcal{G}(\Delta_{\mathbf{G}}\phi) = -\Delta_{\mathbf{G}}(\mathcal{G}\phi)$.

(ii) For any exponential vector $\phi_{\xi}(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \frac{\xi^{\otimes n}}{n!} \rangle$, $\xi \in E$, we have $N\phi_{\xi}(x) = \sum_{n=0}^{\infty} n \langle : x^{\otimes n} :, \frac{\xi^{\otimes n}}{n!} \rangle$. Hence we have

$$\begin{split} &\mathcal{G}(N\phi_{\xi})(x) \\ &= \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!2^m} (-i)^{n+2m} \tau^{\otimes m} \hat{\otimes}_{2m} ((n+2m) \frac{\xi^{\otimes n+2m}}{(n+2m)!}) \rangle \\ &= \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\infty} \frac{n}{n!m!2^m} (-i)^{n+2m} \tau^{\otimes m} \hat{\otimes}_{2m} \xi^{\otimes n+2m} \rangle \\ &\qquad \qquad + \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\infty} \frac{2m}{n!m!2^m} (-i)^{n+2-n} \tau^{\otimes m} \hat{\otimes}_{2m} \xi^{\otimes n+2m} \rangle \\ &= \exp\{-\frac{1}{2} |\xi|_0^2\} \sum_{n=0}^{\infty} n \langle : x^{\otimes n} :, \frac{(-i\xi)^{\otimes n}}{n!} \rangle \\ &\qquad \qquad - |\xi|_0^2 \exp\{-\frac{1}{2} |\xi|_0^2\} \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \frac{(-i\xi)^{\otimes n}}{n!} \rangle. \end{split}$$

By noting that

$$\Delta_{\mathbf{G}}(\mathcal{G}\phi_{\xi})(x) = -|\xi|_{0}^{2} \exp\{-\frac{1}{2}|\xi|_{0}^{2}\} \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \frac{(-i\xi)^{\otimes n}}{n!} \rangle$$

and

$$N(\mathcal{G}\phi_{\boldsymbol{\xi}})(x) = \exp\{-\frac{1}{2}|\boldsymbol{\xi}|_0^2\} \sum_{n=0}^{\infty} n \langle: x^{\otimes n}:, \frac{(-i\boldsymbol{\xi})^{\otimes n}}{n!} \rangle,$$

we have $\mathcal{G}(N\phi_{\xi}) = (\Delta_{G} + N)\mathcal{G}\phi_{\xi}$. But since $\{\phi_{\xi}; \xi \in \mathcal{S}(\mathbb{R})\}$ spans a dense subspace of (\mathcal{S}) , it follows from the continuty of Δ_{G} , N and the \mathcal{G} -transform that for any $\phi \in (\mathcal{S})$, we have $\mathcal{G}(N\phi) = (\Delta_{G} + N)\mathcal{G}\phi$.

Theorem 3.2. For any Hida-distribution Φ , we have

- (i) $\mathcal{F}(\Delta_G^*\Phi) = -\Delta_G^*\mathcal{F}\Phi$
- (ii) $\mathcal{F}(N\overline{\Phi}) = N\mathcal{F}\Phi + \Delta_G^*\mathcal{F}\Phi$.

Proof. By the duality of Theorem 3.1, for any $\phi \in (\mathcal{S})$ we have

(i)
$$\langle \langle \Delta_{G}^{*} \mathcal{F} \Phi, \phi \rangle \rangle = \langle \langle \Phi, \mathcal{G}(\Delta_{G} \phi) \rangle \rangle = \langle \langle \Phi, -\Delta_{G} \mathcal{G} \phi \rangle \rangle = \langle \langle -\Delta_{G}^{*} \Phi, \mathcal{G} \phi \rangle \rangle$$

= $\langle \langle -\mathcal{F}(\Delta_{G}^{*}) \Phi, \phi \rangle \rangle$.

(ii)
$$\langle \langle \mathcal{F}(N\Phi), \phi \rangle \rangle = \langle \langle N\Phi, \mathcal{G}\phi \rangle \rangle = \langle \langle \Phi, N\mathcal{G}\phi \rangle \rangle = \langle \langle \Phi, \mathcal{G}(N\phi) - \Delta_{G}\mathcal{G}\phi \rangle \rangle$$

$$= \langle \langle \Phi, \mathcal{G}(N\phi) + \mathcal{G}(\Delta_{G}\phi) \rangle \rangle = \langle \langle \mathcal{F}\Phi, N\phi + \Delta_{G}\phi \rangle \rangle$$

$$= \langle \langle N\mathcal{F}\Phi + \Delta_{G}^{*}\mathcal{F}\Phi, \phi \rangle \rangle.$$

This completes the proof.

THEOREM 3.3. For any $\phi \in (\mathcal{S})$, $\sigma_{e^{-i}}\phi \in (\mathcal{S})$ satisfies the Cauchy problem (3.1), where $\sigma_{\lambda}\phi(x) = \phi(\lambda x)$.

Proof. Let $v(y,t) = \mathcal{G}u(y,t)$. Then by Theorem 3.1, v(y,t) satisfies the following equation:

(3.3)
$$\frac{\partial}{\partial t}v(y,t) = -Nv(y,t), \qquad v(y,0) = \mathcal{G}\phi(y).$$

It is well-known [5] that $q_t(\mathcal{G}\phi)(y) = \int_{S'(\mathbb{R})} \mathcal{G}\phi(e^{-t}y + \sqrt{1 - e^{-2t}}x)d\mu(x)$ satisfies the equation (3.3). Hence $\mathcal{G}^{-1}(q_t(\mathcal{G}\phi))(x)$ satisfies the equation (3.1). Note that for any $\xi \in E_{\mathbb{C}}$,

(3.4)
$$\mathcal{G}\phi_{\xi} = e^{-\frac{1}{2}\langle \xi, \xi \rangle} \phi_{-i\xi}, \qquad q_{t}(\mathcal{G}\phi_{\xi}) = e^{-\frac{1}{2}\langle \xi, \xi \rangle} \phi_{-ie^{-t}\xi}$$

and

(3.5)
$$\sigma_{\lambda}\phi_{\xi}(x) = \phi_{\xi}(\lambda x) = e^{\frac{1}{2}(\lambda^2 - 1)(\xi, \xi)}\phi_{\lambda\xi}.$$

Thus by (2.2), (3.4) and (3.5), we obtain that

$$\mathcal{G}^{-1}(q_t(\mathcal{G}\phi_{\xi})) = e^{\frac{1}{2}(e^{-2t}-1)\langle \xi, \xi \rangle} \phi_{\epsilon^{-t}\xi}$$
$$= \sigma_{e^{-t}}\phi_{\xi}, \quad \xi \in E_{\mathbb{C}}.$$

But since $\{\phi_{\xi} : \xi \in E_{\mathbb{C}}\}$ spans a dense subspace of (S), it follows from the continuity of σ_{λ} [16] that for any $\phi \in (S)$, we have $\mathcal{G}^{-1}(q_{t}(\mathcal{G}\phi)) = \sigma_{e^{-t}}\phi$. Hence we complete the proof.

REMARK. It is well-known that $\Delta_G + N = \int_{\mathbb{R}} (\partial_t + \partial_t^*) \partial_t dt = \int_{\mathbb{R}} x(t) \partial_t dt$. Thus $\Delta_G + N$ is an infinite dimensional analogue of a first order differential operator $\sum_{j=1}^n x_j \frac{\partial}{\partial x_j}$ on \mathbb{R}^n . Hence the solution $u(t,x) = \phi(e^{-t}x)$ of the Cauchy problem (3.1) is indeed the solution of a first order differential equation with variable coefficients in white noise analysis setting.

EXAMPLE. Let B be a bounded operator from $\mathcal{S}'(\mathbb{R})$ into $\mathcal{S}(\mathbb{R})$. Consider the following Cauchy problem

(3.6)
$$\frac{\partial}{\partial t}u(x,t) = -(\Delta_{\mathbf{G}} + N)u(x,t), \qquad u(x,0) = \langle x, Bx \rangle.$$

Since $(L^2(\mathbb{R}), \mathcal{S}'_p(\mathbb{R}))$ is an abstract Wiener space for any $p > \frac{1}{2}$, B is a trace class operator of $L^2(\mathbb{R})$ and μ has the support contained in $\mathcal{S}'_1(\mathbb{R}) = \mathcal{S}_{-1}(\mathbb{R})$. Hence

$$\mathcal{G}(\langle \cdot, B \cdot \rangle)(x) = trace_{L^2(\mathbb{R})}B - \langle x, Bx \rangle.$$

Therefore, we have

$$\begin{split} v(x,t) &= trace_{L^2(\mathbb{R})} B \\ &- \int_{S_{-1}(\mathbb{R})} \langle \mathrm{e}^{-t} x + \sqrt{1 - \mathrm{e}^{-2t}} y, B(\mathrm{e}^{-t} x + \sqrt{1 - \mathrm{e}^{-2t}} y) \rangle d\mu(y) \\ &= trace_{L^2(\mathbb{R})} B - (1 - \mathrm{e}^{-2t}) trace_{L^2(\mathbb{R})} B - \mathrm{e}^{-2t} \langle x, Bx \rangle \\ &= \mathrm{e}^{-2t} trace_{L^2(\mathbb{R})} B - \mathrm{e}^{-2t} \langle x, Bx \rangle. \end{split}$$

Hence $u(x,t) = \mathcal{G}^{-1}(v(\cdot,t)(x))$ satisfies the equation (3.6) and is given by

$$\begin{split} u(x,t) &= \mathcal{G}^{-1}(v(\cdot,t))(x) \\ &= \mathrm{e}^{-2t} trace_{L^2(\mathbb{R})} B - \mathrm{e}^{-2t} \int_{S_{-1}(\mathbb{R})} \langle y + ix, B(y+ix) \rangle d\mu(y) \\ &= \mathrm{e}^{-2t} \langle x, Bx \rangle. \end{split}$$

Theorem 3.4. For any $\Phi \in (\mathcal{S})^*$ with $\Phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , F_n \rangle$, the Hida distribution

$$u(x,t) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{1}{m! 2^m} \left(\sum_{l=0}^{n_l} {m \choose l} (-1)^l e^{-(n-2l)t} \right) F_{n-2m} \hat{\otimes} \tau^{\otimes l} \rangle$$

satisfies the equation (3.2).

Proof. By taking the Fourier transform in the equation (3.2), we have

(3.7)
$$\frac{\partial}{\partial t}v(y,t) = -Nv(y,t), \qquad v(y,0) = \mathcal{F}\Phi(y),$$

where $v(y,t) = \mathcal{F}(u(\cdot,t))(y)$. Since by (2.3)

$$\mathcal{F}\Phi(y) = \sum_{n=0}^{\infty} \langle : y^{\otimes n} :, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{(-i)^n}{m! 2^m} F_{n-2m} \hat{\otimes} \tau^{\otimes m} \rangle,$$

we can easily check that

$$v(y,t) = \sum_{n=0}^{\infty} e^{-nt} \langle : y^{\otimes n} :, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{(-i)^n}{m! 2^m} F_{n-2m} \hat{\otimes} \tau^{\otimes m} \rangle$$

satisfies the equation (3.7). By taking the inverse Fourier transform, we have

$$u(x,t) = \mathcal{F}^{-1}v(\cdot,t)(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{i^n}{m!2^m} G_{n-2m} \hat{\otimes} \tau^{\otimes m} \rangle,$$

where $G_n = e^{-nt} \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{(-i)^n}{m!2^m} F_{n-2m} \hat{\otimes} \tau^{\otimes m}$. And we note that

$$\sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{i^{n}}{m!2^{m}} G_{n-2m} \hat{\otimes} \tau^{\otimes m}
= \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{i^{n}}{m!2^{m}} \left(e^{-(n-2m)t} \sum_{l=0}^{\left[\frac{n-2m}{2}\right]} \frac{(-i)^{n-2m}}{l!2^{l}} F_{n-2m-2l} \hat{\otimes} \tau^{\otimes l} \right) \hat{\otimes} \tau^{\otimes m}
= \sum_{m=0}^{\left[\frac{n}{2}\right]} \sum_{l=0}^{\left[\frac{n-2m}{2}\right]} \frac{(-1)^{m}}{l!m!2^{m+l}} \left(e^{-(n-2m)t} F_{n-2m-2l} \hat{\otimes} \tau^{\otimes l+m} \right)
= \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{k!2^{k}} \left(\sum_{s=0}^{k} \binom{k}{s} (-1)^{s} e^{-(n-2s)t} \right) F_{n-2k} \hat{\otimes} \tau^{\otimes k}.$$

Hence

$$u(x,t) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{m! 2^m} \left(\sum_{l=0}^m {m \choose l} (-1)^l e^{-(n-2l)t} \right) F_{n-2m} \hat{\otimes} \tau^{\otimes l} \rangle$$

satisfies the equation (3.2).

References

- 1. L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123-181.
- 2. L. Gross, Abstract Wiener space, Proc. 5th Berkeley Sympos. Math. Stat. and Prob. 2, Berkeley: univ. Berkeley (1967), 31-42.
- 3. T. Hida, H.-H. Kuo, J. Potthoff and L. Streit (eds.), White noise: An Infinite Dimensional Calculus, Kluwer Academic Publishers, 1993.
- 4. K. Itô, Multiple Wiener integral, J. Math. Soc. Japan 1 (1967), 157-169.
- 5. S. J. Kang, Heat and Poisson equations associated with number operator in white noise analysis, Soochow J. Math. 20 (1994), 45-55.
- H.-H. Kuo, Integration by parts for abstract Wiener measures, Duke Math. J. 41 (1974), 373-379.
- 7. H.-H. Kuo, Gaussian Measures in Banach Space, vol. 463, Lect. Notes in Math. Springer-Verlag, 1975.
- 8. H.-H. Kuo, On Fourier transform of generalized Brownian functionals, J. Multivar. Anal. 12 (1982), 415-431.
- 9. H.-H. Kuo, The Heat equation and Fourier transforms of generalized Brownian functionals, Lect. Notes in Math. Springer-Verlag 1236 (1987), 154-163.
- H.-H. Kuo, Stochastic differential equations of generalized Brownian functionals, Lect. Notes in Math. Springer-Verlag 1390 (1989), 138-146.
- 11. H.-H. Kuo, Fourier transform in white noise calculus, J. Multivar. Anal. 31 (1989), 311-327.
- 12. H.-H. Kuo, Lectures on white noise analysis, Soochov J. Math. 18 (1992), 229-300.
- 13. Y.-J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite dimensinal space 1, Trans. Amer. Math. Soc. 262 (1980), 259-283.
- 14. N. Obata, White noise calculus and Fock space, vol. 1577, Lecture Notes in Math. Springer, Berlin, Heidelberg, New York, 1994.
- 15. M. A. Piech, Paraboric equations associated with the number operator, Trans. Amer. Math. Soc. 194 (1974), 213-222.
- J. Potthoff and J.-A. Yan, Some results about test and generalized functionals of white noise, Probability theory, L.H.Y. Chen et al.(eds.), de Gruyter, Berlin, New York, 1992.
- 17. J. A. Yan, Some recent developments in white noise analysis, Preprint, 1990.

Department of Mathematics Sogang University Seoul 121-742, Korea