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CAUCHY PROBLEMS FOR A
PARTIAL DIFFERENTIAL EQUATION
IN WHITE NOISE ANALYSIS

DoNG MYUNG CHUNG AND UN CiG Ji

1. Introduction

The Gross Laplacian Ag was introduced by Gross for a function
defined on an abstract Wiener space (H, B) [1,7]. Suppose ¢ is a twice
H-differentiable function defined on B such that ¢"(z) is a trace class
operator of H for every + € B. Then the Gross Laplacian Agy of ¢ is
defined by

Agp(z) = traceygp'(x).
If in addition ¢'(z) € B*, then the number operator Ny of ¢ is defined
by
No(z) = —tracens"(z) + (z,¢/(2),
where (-,-) denotes the B — B* pairing.

In [1], Gross studied the solution of the heat equation associated

with the Gross Laplacian Ag on (H, B):

Ou

ot
In [15], Piech studied the solution of the heat equation associated with
the number operator N on (H, B):

Ou
a(zat) = _‘Nu('r»t)’ u(z:,O) = f(‘T)

(z,t) = —;—Agu(ar,t), u(z,0) = f(z).

We note that in white noise space (S'(R),B,u), the white noise
measure  is supported in the space S;(see section 2) for any p > 7.

Received January 5, 1995.

1991 AMS Subject Classification: 46F25, 35R15.

Key words: Gross Laplacian, number operator, Fourier transform.
Research supported by KOSEF and BSRI.



310 Dong Myung Chung and Un Cig Ji

Thus (LQ(R),SL(R)) is an abstract Wiener space Therefore we can
define Agy and Ny for functions » defined on S, R).

In [9,10], Kuo has studied the heat equation associated with the
Gross Laplacian Ag in white noise analysis setting. In (5], Kang has
studied the heat equation associated with the number operator N in
white noise analysis setting. In this paper we will investigate the exis-
tence of a solution of the Cauchy problem associated with the operator
Ag + N in white noise analysis setting.

2. Preliminaries

Let S(R) be the Schwartz space of real valued rapidly decreasing
smooth functions on R. The dual space S'(R) of S(R) is the space
of tempered distributions on R. Then S(R) C L*(R) C S(R) is a
Gel'fand triple.

Let 4 = ——di:; +12+4 1. Then A is the densely defined self-adjoint on
L*(R) and Ae, = (2n + 2)e,,, where {en} is an ONB of L?(R) defined
. W2 d” 2

en(u) = (—1)(n32™n]) 2T [du"e .

For each p > 0, define

flo =147 flo.  f € LA(R),

where |- [o is the L*(R)-norm. Let S,(R) = {f € L*R)| |flp < oo}
Then Sp(R) is a real separable Hilbert space with the norm | - |, and
the dual space S,(R) of S,(R) is given by S_,(R). Furthermore, we
have §;(R) C S,(R) for p < ¢ and

S(R) = [)Sp(R),  S'(R)=|JS_.(R).

p20 p20

Since S(R) is a nuclear space, by the Bochner-Minlos theorem there
exists a unique probability measure y on o-algebra B of Borel subsets

of §'(R) such that

/ ei<I|£>d#<x) — 13_%|£|g, 5 & S'R)a
S'(R)
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where (-, -) is the S'(R)~S(R) pairing. The triple (S'(R), B, i) is called
the white noise space.

Let (L?) be the Hilbert space of p-square integrable functions on
the white noise space (S'(R), B, ) with norm |{-|/y. By the Wiener-Itoé
decomposition theorem [3,14], every ¢ € (L?) admits a chaos decom-

position:
6= I.(fa).
n==0

where I,(f,) denotes a multiple It0 integral of order n with the kernel
fn € fz(R") (the symmetric L%-space).

It is well-known (see [17]) that I,(f)(z) = (: z*™ ., f), where : z®™ .
is the Wick ordering. Hence for each ¢ in (L?), we have

oC

o(z) =3 (2" 1 f) fa € LAR™).

n=0

Moreover, we have
oo

lls = n!lfals.

=0

The second quantization ['(A4) of A is densely defined on (L?) as

follows: for ¢ € (L?) with ¢(z) = 320 (1 2%™ 1, £,),
T(A)é(z) = Z<: PALNY Lol A
n=1
For p > 0, define
ll¢ll, = IT(A)llo

and let (S), = {¢ € (L?);||¢|l, < oc}. Then (S}, is a Hilbert space
with the norm || - ||,. For p < 0, we define (§), as the completion of
(L?) with respect to || - ||,. Then the dual space (8); of (S)p is given
by (S)_p, and we have

(8)g C(S)p CT(L?) C(S8)-p C(8)—y,

where ¢ > p > 0. The space (§) of test functions is the projective limit
of {{(8)p;p > 0}. The space (S)* of generalized functions (or Hida
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distributions) is the dual space of (§). Thus we have a Gel’fand triple
(8) € (L*) C (8)* and will use the symbol ((-,-)) for the (8)*-(S)
pairing.

Let G be a continuous linear operator from (§) into itself defined by

Galy) = (e .g)), ye

where : e=*¥%): € (S)*. Then it is known [3, 12} that the adjoint G* of
g is the Fourier transform F. For any ¢ € (§) with ¢(z) = 3 (:

S fn)y fn € S(R" G¢ has the following chaos decomposition

(2 1 = Z Z (n+ _2m)!(_i)n+2m7-®m®2mfn+2m>'

And it can be shown that G* = G~!  and for any ¢ € (S) with
¢(y) = 200 ¥®" 5 fa), Fn € S(R™), G~1¢ is given by

ey LNy en . N (n2m)l ®m s
(22) g ¢(.T) = nZ=0< T .,%-W(Z) T ®2mfn+2m>a
Where T®m®2mfn+2m me (f17t1 tz,tz,"' ,‘my )dtl d

u € R™. It also can be shown by using the duallty that for any ¢ ¢ S)*

with ®(z) = 3> (: 2®": F,), F, ES’(R") F® and F~1® are given
by

oo 3, .\,
23)  Few) =) (Y UE , 0em)
n=0 m=0
and
oo 3 .
-1 — . .8n S ®m
(2.4) F @(z)—;::o(.x "2 o Froam&7O™).

It is known [3] that for any ¢ € (S) with ¢(z) = 3°°° (: 28", f,),
fn € S(R") Ag¢ and N¢ are given by

Agg(z) = Z(n+2) (n+1)(: 2% 1, Q2 frsa)
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and

o0

No(z) = Z n(:®" 1, f).

n={0

3. Cauchy problem associated with the operator Ag + N

In this section we use the G-and Fourier transforms to investigate
the existence of a solution of the following Cauchy problems:

(1) g = A+ Nu(t),  u(z.0) = 4(x),

where ¢ € (§), and

(3.2) gt—u(x,t) = —(A§ + N)u(a,t), u(z,0) = &(x),

where ® € (§)* and AY is the adjoint of Ag.

THEOREM 3.1. For any ¢ € (S), we have

(1) 6(Agé) = —Ac(G9)

(ii) G(N@) = (Ag + N)G¢.

Proof. (i) Let ¢ € (S) be given by ¢(z) = 3.>_ (: z®" ., f,). Then

we have
Acd(z) =) (n+1)(n+2)(: 2%, 70 fuia).

Hence by (2.1), we obtain that

oC oo

TL + 2m)' n+2m @m
G(Ace)(y) =) (:y®" Z o () Bam
n=0 m=0

X ((n+2m+1)(n+2m + 2)78; frtam+2))

> on = (n+2m + 2)!
= —-nzz:o(n + 1)(71 +2)<: y® 5 Z —(EW

x ( n+2m+2 ®m+

= —Ag(G¢)(z).

&2(m+1)) Fatzm+2)
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Thus we have G(Ago) = ~Ag(Go).
(i1) For any exponential vector ¢¢(z) = 320 (: 2©" -, f%), £cE,
we have Noe(z) =37 n(: 2%, §i—,n> Hence we have

G(Nog)(x)
o 20 %
mn n+2m' n+42m 5 Entzm
= Z(::c@ : Z (—-I-'—m)(—-z) HIm @M ((n+2m) 6——|))
o = nlm!2 (n+2m})!
oo 0
Kn n N2 M S n m
DI S T
n=0 m=0
= p = 2m Y D, A D D7m s
F 3 3 I e gomg,, convony
n=0 m=10 nim!2
- (—ig)3m
= exp{—3[¢5) 3 n( a0 5
n=0 '
o0 o (—if)®n
|5fo€xp{—"|f|o D
n=0 ’

By noting that

Ac(Gog)(x) = —[¢[fexp{- = bél }Z

and

o> s @771
N(Goe)(x) = exp{ 5 eli} Y mie 207 2 LT,

we have G(N¢g) = (Ag + N)G¢,. But since {¢s; ¢ € S(R)} spans a
dense subspace of (§), it follows from the continuty of Ag, N and the
G-transform that for any ¢ € (S), we have G(N¢' = (Ag + N)Go.

THEOREM 3.2. For any Hida-distribution ®, we have
(1) F(AL®) = —ALF®
(i1) F(IN®) = NF® + ALFO.

Proof. By the duality of Theorem 3.1, for any ¢ € (S) we have

(i) ((AGF®.9)) = ((2,9(Ace))) = (8. ~AcGY)) = ((-A58.G9))
(-F(A5)®, ¢)).
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(i) ((F(N®).4)) = ((N®,G6)) = ({2, NG4)) = ((&,G(N¢) - AcG9))
((2,G(N9) + G(Ace)) = ((F&, N + Age))

((NF® + ALF®,0)).

This completes the proof.

THEOREM 3.3. For any ¢ € (S), 0.-:¢ € (S) satisfies the Cauchy
problem (3.1), where axd(z) = d( Az).

Proof. Let v(y,t) = Gu(y,t). Then by Theorem 3.1, v(y,t) satisfies

the following equation:

; 0 ;
(33) 5’{“( t) = —;V’U(y./ t)v ’U(y,O) = g¢(y)

It is well-known [5] that ¢;(Gé)(y) = fS'(m) Gole ly+v1 —e~2tz)du(z
satisfies the equation (3.3). Hence G~ !(q:(G@))(:r) satisfies the equa-
tion (3.1). Note that for any £ € E¢,

(34) Gog=eT2 004, gu(Gog) = e 7806 .
and

(3.5) oade(z) = de(Az) = ex N ~DEGg

Thus by (2.2), (3.4) and (3.5), we obtain that

Y qi(Goe)) = e%(e‘“_l)(fyf)d)e_tf
:Ue_‘¢fa €€EC

But since {¢¢ : £ € Ec} spans a dense subspace of (), it follows from
the continuity of o) [16] that for any ¢ € (S), we have G 1(g:(G¢)) =
0e.-+¢. Hence we complete the proof.

REMARK. It is well-known that Ag + N = fll& (O + 0F)Oudt =
fzz(t)0ydt. Thus Ag + N is an mﬁmte dxmenalonal analogue of a
first order differential operator ZJ 1255 az on R”. Hence the solution

u(t,r) = ¢(e~'z) of the Cauchy problem (3.1) is indeed the solution
of a first order differential equation with variable coefficients in white
noise analysis setting.
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EXAMPLE. Let B be a bounded operator from S'(R) into S(R).
Consider the following Cauchy problem

(3.6) -(%u(z:,t) = —(Ag + Nu(z,1), u(z,0) = (z, Br).

Since (L*(R),S,(R)) is an abstract Wiener space for any p > 1, B
is a trace class operator of L?(R) and p has the support contained in

S{(R) = S_;(R). Hence
G((-,B))(z) = trace»xyB — (z, Bz).
Therefore, we have

v(z,t) = trace g B
-/5 (m)<e"’x +v1—e-2ty, Ble™'z + V1 — e2ty))du(y)
-1

= tracezgyB — (1 — e_Zt)traceLz(m)B — e {2z, Bx)
= e"ZttraceLz(m)B — e ?(z, Bz).

Hence u(z,t) = G~ (v(-,t)(z) satisfies the equation (3.6) and is given
by

u(z,t) = G~ (v(-, 1))(z)
= MracepsmB e [y i By 4 in)duty)
S_1(R)

= e *(z, Bz).

THEOREM 3.4. For any ® € (S)* with ®(z) = 3.0 (: 2% ., F,),
the Hida distribution

oo (3] .
1 ~ fm ~
u(e,t) =3 (2%, nﬂ2m(§i‘(ﬁz)<—1>%-<"—””)Fz—mn®r®5
n=0 m=0 =0

satisfies the equation (3.2).

Proof. By taking the Fourier transform in the equation (3.2), we
have

B1) gD = Mot ou.0) = Fo(y),
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where v(y,t) = F(u(-,t))(y). Since by (2.3)

s 3 .
-1 ~
Fo(y)=) (v E’n‘Q)mF"—Zm®T®m>»
n=0 m=0

we can easily check that

Z 3 — m'2m n-2m

satisfies the equation (3.7). By taking the inverse Fourier transform,
we have

3

oo (

u(z,t) = Flo(,t)(z) = Z( z®m

n=0 m

'Tl

=G ®TE™),

ml2m

il

where G, = e~ ™! ZE}:(J En—,;),: Fr_2m®7®™. And we note that

Gn- 2m®7-®m

[n——zz—m'] n—2m
._(n—2m)t Z (——Zl)lT_Fn—2m—2I®T®I)®T®m
1=0 '

—(anm)tF

t @l
n—2m—2CT® +m)

lm12m+l

k
Z( )( 1)36——111 2s)t)Fn_—2k®T®k

3
I
o

[(CF
—
I -

Hence

o 3] m
u(z,t) = 3 (28, ( ( )( e =200 F o &7
n=0

l:()

(R

3

satisfies the equation (3.2).
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