• Title/Summary/Keyword: Width-to-thickness ratio

Search Result 461, Processing Time 0.029 seconds

The Effect of Longitudinal Stiffeners on Load Carrying Capacity in Steel Pipe-Section Piers (원형강교각에서 수직보강재가 내하력에 미치는 영향)

  • Chang, Kyong Ho;Jang, Gab Chul;Lee, Chan Ho;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.653-660
    • /
    • 2004
  • To increase the efficiency of the urban areas, pipe section steel piers, which have relatively small sections, must be constructed. Since smaller sections mean decreased load capacity, longitudinal stiffeners were applied to the pipe section steel piers to increase their load capacity. Increased load capacity through longitudinal stiffeners, however, could not yet be confirmed. Therefore, the effect of longitudinal stiffeners on the load capacity of pipe section steel piers still needs to be studied. In this paper, the effect of the number of longitudinal stiffeners on the load capacity of steel piers was determined by carrying out elastic plastic FE analysis on material and geometric non-linearity. In addition, comparative analyses of the parameters of the width, the thickness of longitudinal stiffeners, and the slenderness ratio of steel piers were carried out to determine the effects of longitudinal stiffeners.

Morphometric Study of the Korean Adult Pituitary Glands and the Diaphragma Sellae

  • Ju, Kyo-Sung;Bae, Hack-Gun;Park, Hyung-Ki;Chang, Jae-Chil;Choi, Soon-Kwan;Sim, Ki-Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • Objective: To investigate the morphometric characteristics of the pituitary gland and diaphragma sellae in Korean adults. Methods: Using the 33 formaline fixed adult cadavers (23 male, 10 female), the measurements were taken at the diaphragma sellae and pituitary gland. The authors investigated the relationship between dura and structures surrounding pituitary gland, morphometric aspects of pituitary gland and stalk, and morphometric aspect of central opening of diaphragma sellae. Results: The boundary between the lateral surface of pituitary gland and the medial wall of cavernous sinus was formed by the thin dural layer and pituitary capsule. The pituitary capsule adherent tightly to the pituitary gland was observed to continue from the diaphragma sellae. Mean width, length, and height of the pituitary gland were 14.3${\pm}$2.1, 7.9${\pm}$1.3, and 6.0${\pm}$0.9 mm in anterior lobes, and 8.7${\pm}$1.7, 2.9${\pm}$1.1, and 5.8${\pm}$1.0 mm in posterior lobes, respectively. Although all dimensions of anterior lobe in female were slightly larger than those in male, statistical significance was noted in only longitudinal dimension. The ratio of posterior lobe to the whole length of pituitary gland was about 27%. The mean thickness of pituitary stalk was 2 mm. The diaphragmal opening was 5 mm or more in 26 (78.8%) of 33 specimen. The opening was round in 60.6% of the specimen, and elliptical oriented in an anterior-posterior or transverse direction in 39.4%. Conclusion: These results provide the safe anatomical knowledge during the transsphenoidal surgery and may be helpful to access the possibility of the development of empty sella syndrome.

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

Design and Fabrication of Flexible OTFTs by using Nanocantact Printing Process (미세접촉프린팅 공정을 이용한 유연성 유기박막소자(OTFT)설계 및 제작)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh;Esashi Masayoshi
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.506-508
    • /
    • 2005
  • In general, organic TFTs are comprised of four components: gate electrode, gate dielectric, organic active semiconductor layer, and source and drain contacts. The TFT current, in turn, is typically determined by channel length and width, carrier field effect mobility, gate dielectric thickness and permittivity, contact resistance, and biasing conditions. More recently, a number of techniques and processes have been introduced to the fabrication of OTFT circuits and displays that aim specifically at reduced fabrication cost. These include microcontact printing for the patterning of metals and dielectrics, the use of photochemically patterned insulating and conducting films, and inkjet printing for the selective deposition of contacts and interconnect pattern. In the fabrication of organic TFTs, microcontact printing has been used to pattern gate electrodes, gate dielectrics, and source and drain contacts with sufficient yield to allow the fabrication of transistors. We were fabricated a pentacene OTFTs on flexible PEN film. Au/Cr was used for the gate electrode, parylene-c was deposited as the gate dielectric, and Au/Cr was chosen for the source and drain contacts; were all deposited by ion-beam sputtering and patterned by microcontact printing and lift-off process. Prior to the deposition of the organic active layer, the gate dielectric surface was treated with octadecyltrichlorosilane(OTS) from the vapor phase. To complete the device, pentacene was deposited by thermal evaporation and patterned using a parylene-c layer. The device was shown that the carrier field effect mobility, the threshold voltage, the subthreshold slope, and the on/off current ratio were improved.

  • PDF

Property changes of the machine-embroidered fabrics in stitch techniques and width (자수기법과 자수 폭에 따른 기계자수 직물 및 니트의 물성변화)

  • Chang, Eun-Jung;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • This study examined the cause of the phenomenon of shrinkage in machine-embroidered fabrics, specifically those made of thin and pliable fabrics. Four woven fabrics and two knitted fabrics were selected as samples for analysis. The fabrics selected were silk organza, flax linen, polyester chiffon, cotton batiste, polyester raschel mesh, and cotton jersey. The thickness and drapability of the fabrics were observed and the shrinkage of the various types of embroidered fabrics produced using satin & step stitch techniques were measured. Moreover, the correlation between the shrinkage of the machine-embroidered fabrics and the drapability of the original fabrics was analyzed. Also, the colorfastness of six embroidery yarns was determined. The results of the study are as follows: first, the shrinkage of machine-embroidered fabrics increased at a greater rate than in embroidered knitted fabrics as compared to rates in embroidered woven fabrics. Moreover, in terms of stitch techniques, there was a greater shrinkage rate when satin stitch was applied compared to step stitch. Second, the shrinkage rate of machine-embroidered fabrics decreased when a stabilizer was fused onto the fabric. The shrinkage rate also decreased for fabrics when fused with paper stabilizer compared to those without it, and the rate decreased at a greater amount with paper stabilizer as compared to alginate film. Third, since there was a strong correlation between the shrinkage rate of the embroidered fabric and the drapability ratio of the original fabric, it was generally the case that the more pliable the fabric was, the greater the shrinkage rate was when the fabric was embroidered. Fourth, while the embroidery yarns mainly used in machine-embroidery presented an overall excellent level of colorfastness, there was slight color migration of level 4 to level 5 when using viscose rayon.

Elastic Local Buckling Analysis of Orthotropic Structural Shapes Using Bleich's Approximate Method (Bleich의 근사해법을 이용한 직교이방성 구조용부재의 탄성국부좌굴해석)

  • Lee, Won Bok;Yoon, Soon Jong;Lee, Seok Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.795-805
    • /
    • 1994
  • This paper presents the analytical results for the prediction of elastical local buckling stress of fiber reinforced plastic (orthotropic) structural shapes manufactured from pultrusion process. In the derivation, existing Bleich's approach which was originally derived for the isotropic structural shapes was extended and non-dimensionalized parameters which can simplify the numerical calculations were adopted. Analytical results were compared with reported closed-form solutions and experimental results. It is graphically shown that the results can be used effectively to predict the local buckling stress of pultruded fiber reinforced plastic structural shapes. Numerical results were presented graphically to estimate the local buckling stress of various cross-sectional dimensions and lengths of columns. In addition, limits of width to thickness ratio of flange and web of pultruded structural shapes were suggested in which material failure or overall buckling occurs prior to local buckling.

  • PDF

A Study on the Change of Body Composition of Female Adolescents for School Uniform Design (교복 설계를 위한 여자 청소년의 체형 변화 연구)

  • Kim, Seowoo;Nam, Yun Ja;Kim, Kyoung Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.224-236
    • /
    • 2020
  • In this study, the 4th (1997) and 6th (2013) direct measurements of Size Korea compared the changing shape of women between the ages of 12 and 18. Comparing the items of height and length, the height and shoulder height were significantly reduced, the waist height was not significantly different, and the height of the upper hip was significantly increased, resulting in a smaller upper torso ratio and a higher lower torso rate. The width and thickness associated with human obesity, the circumference items and obesity levels often increased significantly with the change of the times, indicating that the overall body size was increased and that the chest area was changed to a cylindrical shape with changes in the breast equilibrium. Comparing agespecific measurements with graphs analyzing the trend of change in growth, the results showed that the change in 1997 was minimal since age 14; however, a continuous increase was achieved in 2013 that corresponded to the age at which growth is complete. The results of these studies are expected to be used as basic data to predict pattern design, body implementation, and trends in shape changes for young women.

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings (면내 압축 및 전단하중을 받는 적층복합판의 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5199-5206
    • /
    • 2010
  • In this paper, we investigate the buckling analysis of laminated composite plates, using a improved assumed natural strain shell element. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. The eigenvalues of the laminated composite plates are calculated by varying the width-thickness ratio and angle of fiber. To improve an shell element for buckling analysis, the new combination of sampling points for assumed natural strain method was applied and the refined first-order shear deformation theory which allows the shear deformation without shear correction factor. In order to validate the present solutions, the reference solutions are used and discussed. The results of laminated composite plates under the in-plane shear loading may be the benchmark test for the buckling analysis.

A Study on Design and Fabricate of a Intermediate Frequency Band SAW Filter (IF 대역 SAW 필터 설계 및 제작)

  • 유일현;권희두;정양희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • We have studied a method to design and fabricate the Intermediate Frequency(IF) band pass filter with low shape factor which is used for CDMA base station on the 35°Y-cut X-propagation Quartz substrate. In order to fabricate a device of the low shape factor for the IF SAW filter on this substrate, we employed apodization weighted type interdigital transducer(IDT) as an input and withdrawal weighted type IDT as an output by using impulse modelling method. Also, using the Kaiser-Bessel window function, we have adopted 2200pairs and 1000pairs of input and oueut IDT respectively to minimize the effect of ripple. Furthermore, the width and the space of IDT finger are 3.6 ㎛ and 3.5 ㎛ respectively. Thus, we can have optimal results when the IDT thickness is 6000Å in consideration of the ratio of SAW's wavelength while it's aperture is 2mm for impedance matching. The fabricated SAW filter for CDMA had the property of almost 115.2MHz of a center frequency, less then 1.27MHz of bandwidth, less than 1.3 of shape factor, - l5dB of out band attenuation insertion loss and -45dB of rejection band.

  • PDF