• 제목/요약/키워드: Wide-gap materials

검색결과 144건 처리시간 0.032초

Effects of Ohmic Area Etching on Buffer Breakdown Voltage of AlGaN/GaN HEMT

  • Wang, Chong;Wel, Xiao-Xiao;Zhao, Meng-Di;He, Yun-Long;Zheng, Xue-Feng;Mao, Wei;Ma, Xiao-Hua;Zhang, Jin-Cheng;Hao, Yue
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.125-128
    • /
    • 2017
  • This study is on how ohmic area etching affects the buffer breakdown voltage of AlGaN/GaN HEMT. The surface morphology of the ohmic metal can be improved by whole etching on the ohmic area. The buffer breakdown voltages of the samples with whole etching on the ohmic area were improved by the suppression of the metal spikes formed under the ohmic contact regions during high-temperature annealing. The samples with selective etching on the ohmic area were investigated for comparison. In addition, the buffer leakage currents were measured on the different radii of the wafer, and the uniformity of the buffer leakage currents on the wafer were investigated by PL mapping measurement.

Wide Band-gap FETs for High Power Amplifiers

  • Burm, Jin-Wook;Kim, Jae-Kwon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.175-181
    • /
    • 2006
  • Wide band-gap semiconductor electron devices have made great progresses to produce very high power amplifiers for various wireless standards. The advantages of wide band-gap electronic devices and their progresses are summarized in this paper.

초내열합금 wide-gap 브레이징부의 미세조직 및 기계적 성질 변화에 미치는 첨가금속분말의 영향 (Effect of Additive Powder on Microstructural Evolutions and Mechanical Properties of the Wide-gap Brazed Region in IN738 superalloy)

  • 김용환;권숙인;변재원;이원식
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.399-407
    • /
    • 2005
  • The effect of IN738 additive powder on microstructure and mechanical properties of the wide-gap region brazed with BNi-3 filler metal powder was investigated. The wide-gap brazing was conducted in a vacuum of $2\times10^{-5}torr\;at\;1200^{\circ}C$ with various powder mixing ratios of additive to filler powders. The microstructures of the wide-gap brazed region were analyzed by SEM and AES. The region brazed with only BNi-3 filler metal powder had a microstructure consisted of proeutectic, binary eutectic and ternary eutectic structure, while that brazed with a mixture of IN738 additive powder and BNi-3 filler metal powder had a microstructure consisted of IN738 additive powder, binary eutectic of $Ni_3B-Ni$ solid solution and (Cr, W)B. The fracture strength of the wide-gap brazed region was about 680 MPa regardless of the additive powder mixing ratios. Cracks were initiated at the (Cr, W)B and binary eutectic of $Ni_3B-Ni$ solid solution, and propagated through them in the wide-gap brazed region, which lowered the fracture strength of the region.

Multicomponent wide band gap oxide semiconductors for thin film transistors

  • Fortunato, E.;Barquinha, P.;Pereira, L.;Goncalves, G.;Martins, R.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.605-608
    • /
    • 2006
  • The recent application of wide band gap oxide semiconductors to transparent thin film transistors (TTFTs) is making a fast and growing (r)evolution on the contemporary solid-state electronics. In this paper we present some of the recent results we have obtained using wide band gap oxide semiconductors, like indium zinc oxide, produced by rf sputtering at room temperature. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above $10^6$ are achieved. The optical transmittance data in the visible range reveals average transmittance higher than 80 %, including the glass substrate. Channel mobilities are also quite respectable, with some devices presenting values around $25\;cm^2/Vs$, even without any annealing or other post deposition improvement processes. The high performances presented by these TTFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

  • PDF

Wide band-gap반도체의 물성 및 고주파용 전력소자의 응용 (Materials properties of wide band-gap semiconductors and their application to high speed electronic power devices)

  • 신무환
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권9호
    • /
    • pp.969-977
    • /
    • 1996
  • 본고에서는 여러가지 Wide Band-gap중에서 특히 최근에 많은 관심을 끌고 있는 GaN와 4H-SiC, 6H0SiC의 전자기적 물성을 소개하고 현재 이들로부터 제작된 prototype소자들의 성능을 비교함으로써 그 발전현황을 알아보기로 한다. 본고에서 관심을 두는 소자분야는 광전소자(optoelectronic devices)라기보다는 고주파 고출력용 전력소자임을 밝힌다. 아울러 GaN로부터 제작된 MESFET(MEtal Semiconductor Field-Effect Transistor)소자의 고주파 대역에서의 Large-Signal특성을 Device/Circuit Model을 통하여 실험치와 비교하여보고 이로부터 최적화된 channel 구조를 갖는 소자구조에서의 RF특성을 조사한다.

  • PDF

Development of high performance near-ultraviolet OLEDs based on the Double Wide Band Gap Emissive Layers

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-kyeong;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.977-979
    • /
    • 2006
  • Organic light-emitting diodes (OLEDs) based on the double wide band gap emissive layers in the range of 380 nm to 440 nm are reported. An efficient electroluminescence with a maximum at 400nm was observed at room temperature under a forward bias about 10V. With the wide band gap organic materials for near-ultraviolet emission, the low operating voltage (5V) and high current efficiency (3 cd/A) have been obtained at $2mA/cm^2$

  • PDF

IPS 모드를 이용한 반투과형 액정 디스플레이 (Transflective Liquid Crystal Display using In-Plane Switching Mode)

  • 송제훈;임영진;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.153-156
    • /
    • 2004
  • We have studied electro-optic characteristics of transflective liquid crystal display (LCD) using in-plane switching mode. Unlike previous transflective LCD using a dual gap structure and multi driving circuit, this transflective LCD has a single gap structure and a single driving circuit. In the voltage on state, the electric field is applied horizontally to the LC directors, and then homogeneously aligned LC directors at initial state is rotated to with the electric field. But the twist angle of the LC directors in reflective area is lower than transmissive area. As a result, it is possible to design the transflective LCD with a single gap and a single driving circuit. The transflective display associated with this LC cell exhibits a wide viewing angle in both reflective and transmissive areas.

  • PDF

Rail-Joint에서 퍼지룰을 기반으로하는 공극신호처리법 (Air-Gap Signal Treatment based Fuzzy Rule in Rail-Joint)

  • 성호경;조정민;이종무;배덕권;김봉섭;신병천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1071-1072
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성 (Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device)

  • 전지연;한진우;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.