Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.6.399

Effect of Additive Powder on Microstructural Evolutions and Mechanical Properties of the Wide-gap Brazed Region in IN738 superalloy  

Kim Y. H. (Division of Materials Science and Engineering, Korea University)
Kwun S. I. (Division of Materials Science and Engineering, Korea University)
Byeon J. W. (Research Institute of Engineering and Technology, Korea University)
Lee W. S. (Advanced Material Division Korea Institute of Industrial Technology)
Publication Information
Korean Journal of Materials Research / v.15, no.6, 2005 , pp. 399-407 More about this Journal
Abstract
The effect of IN738 additive powder on microstructure and mechanical properties of the wide-gap region brazed with BNi-3 filler metal powder was investigated. The wide-gap brazing was conducted in a vacuum of $2\times10^{-5}torr\;at\;1200^{\circ}C$ with various powder mixing ratios of additive to filler powders. The microstructures of the wide-gap brazed region were analyzed by SEM and AES. The region brazed with only BNi-3 filler metal powder had a microstructure consisted of proeutectic, binary eutectic and ternary eutectic structure, while that brazed with a mixture of IN738 additive powder and BNi-3 filler metal powder had a microstructure consisted of IN738 additive powder, binary eutectic of $Ni_3B-Ni$ solid solution and (Cr, W)B. The fracture strength of the wide-gap brazed region was about 680 MPa regardless of the additive powder mixing ratios. Cracks were initiated at the (Cr, W)B and binary eutectic of $Ni_3B-Ni$ solid solution, and propagated through them in the wide-gap brazed region, which lowered the fracture strength of the region.
Keywords
wide-gap brazing; BNi-3 filler metal powder; IN738 additive powder; (Cr, W)B;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. A. Ellison, P. Lowden and J. Liuburdi, J. Eng. Gas Turbine and Power, 116, 237 (1994)   DOI   ScienceOn
2 C. L. Ou and R. K. Shiue, J. Mat. Sci., 38, 2337 (2003)   DOI   ScienceOn
3 D. S. Duvall, W. A. Owczarski and D. F. Paulonis, Weld. J., 53, 203 (1974)
4 C. Y. Su, W. C. Lih, C. P. Chou and H. C. Tsai, J. Mater. Proc. Tech., 115, 326 (2001)   DOI   ScienceOn
5 P. Villars, A. Prince and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Metals Park, Ohio, USA, 5508 (1995)
6 R. Tandon and R. M. German, Int. J. Powd. Metall., 30, 435 (1994)
7 K. A. Ellison, J. Liubudi and J. T. Stover, Superalloy 1996, The Minerals, Metals and Materials Society, 763 (1996)
8 C. Y. Su, C. P. Chou, W. J. Chang and M. H. Li, J. Mat. Eng. Perf., 9, 663 (2000)   DOI   ScienceOn
9 E. Lugscheider, Th. Schittny and E. Halmoy, Weld. Res. Suppl., 1, 95 (1989)
10 R. G. Iacocca, Metall. Trans., 27A, 145 (1996)   DOI
11 T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Metals Park, Ohio, USA, 509 (1990)
12 B. Jahnke and J. Demny, Thin Sol. Film, 110, 225 (1983)   DOI   ScienceOn
13 J. Zhang, Z. Zhang, J. Sun and X. Liu, Mater. Trans. JIM, 41, 1073 (2000)
14 X. W. Wu, R. S. Chandel, H. P. Seow and H. Li, J. Mater. Proc. Tech., 113, 215 (2001)   DOI   ScienceOn
15 Y. H. Yu and M. O. Lai, J. Mater. Sci., 30, 2101 (1995)   DOI
16 E. Lugscheider, K. Klohn and R. Lison, Weld. J., 58, 296s (1979)
17 L. C. Lim, W. Y. Lee and M. O. Lai, Mater. Sci. Tech., 11, 955 (1995)   DOI   ScienceOn
18 T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Metals Park, Ohio, USA, 2860 (1990)
19 S. K. Tung, L. C. Lim and M. O. Lai, Scripta Mater., 34, 763 (1996)   DOI   ScienceOn
20 P. Brauny, M. Hammerschmidt and M. Malik, Mater. Sci. Tech., 1, 719 (1985)
21 S. R. Bell, Mater. Sci. Tech., 1, 629 (1985)   DOI
22 S. K. Tung, L. C. Lim and M. O. Lai, Scripta Mater., 33, 1253 (1995)   DOI   ScienceOn
23 W. Miglietti, DVS Berichtz, 212, 101 (2001)