• Title/Summary/Keyword: Wide input voltage range

Search Result 228, Processing Time 0.028 seconds

A Study of Quasi-Resonant Flyback Power Supply with Very Wide Input Voltage (광범위 입력전압을 갖는 준공진형 플라이백 파워서플라이의 연구)

  • Lee, Yong-Geun;La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.143-145
    • /
    • 2015
  • One of the many problems besetting the converter designer is being able to design a switching power supply that can operate in the range of very wide input voltage. Specially, in an emergency diesel generator system, the AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage of the generator at a nominal constant voltage level. In addition, the AVR must be operated in very wide input voltage. Therefore, a power supply for the AVR must be operated at the very wide input voltage range. In this paper, a quasi-resonant flyback power supply with very wide input voltage range is proposed. Also, the performance of the proposed power supply is demonstrated through experiments.

Double-Input DC-DC Converter for Applications with Wide-Input-Voltage-Ranges

  • Hu, Renjun;Zeng, Jun;Liu, Junfeng;Yang, Jinming
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1619-1626
    • /
    • 2018
  • The output power of most facilities for renewable energy generation is unstable due to external environmental conditions. In distributed power systems with two or more sources, a stable output can be achieved with the complementary power supply among the different input sources. In this paper, a double-input DC-DC converter with a wide-input-voltage-range is proposed for renewable energy generation. This converter has the following advantages: the circuit is simple, and the input voltage range is wide and the fault tolerance is excellent. The operation modes and the steady-state analysis are examined. Finally, experimental results are illustrated to verify the correctness of the analysis and the feasibility of the proposed converter.

Wide Voltage Input Receiver with Hysteresis Characteristic to Reduce Input Signal Noise Effect

  • Biswas, Arnab Kumar
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.797-807
    • /
    • 2013
  • In this paper, an input receiver with a hysteresis characteristic that can work at voltage levels between 0.9 V and 5 V is proposed. The input receiver can be used as a wide voltage range Schmitt trigger also. At the same time, reliable circuit operation is ensured. According to the research findings, this is the first time a wide voltage range Schmitt trigger is being reported. The proposed circuit is compared with previously reported input receivers, and it is shown that the circuit has better noise immunity. The proposed input receiver ends the need for a separate Schmitt trigger and input buffer. The frequency of operation is also higher than that of the previously reported receiver. The circuit is simulated using HSPICE at 0.35-${\mu}m$ standard thin oxide technology. Monte Carlo analysis is conducted at different process conditions, showing that the proposed circuit works well for different process conditions at different voltage levels of operation. A noise impulse of ($V_{CC}/2$) magnitude is added to the input voltage to show that the receiver receives the correct logic level even in the presence of noise. Here, $V_{CC}$ is the fixed voltage supply of 3.3 V.

A High Efficiency Phase-Shifted Full-Bridge Converter with Wide Input Voltage Range (넓은 입력전압 범위에서 높은 효율을 가지는 위상천이 풀브릿지 컨버터)

  • Han, Jung-Kyu;Choi, Seung-Hyun;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.66-69
    • /
    • 2019
  • This study proposes a high-efficiency phase-shifted full-bridge (PSFB) converter with a wide input voltage range. The conventional PSFB converter is a useful topology in high-power applications. This converter not only achieves the zero-voltage switching of the primary switches, but also has small RMS current in the primary side. However, because the conventional PSFB converter has large freewheeling current in the primary side when it is designed considering the hold-up time of the converter, such a converter has high conduction loss at the primary switches. To solve this problem, a new PSFB converter is proposed in this study. The experiment is implemented with an input voltage ranging from a 320 V-400 V and an output power specification of 715 W.

High Frequency Dual Mode Control LLC Resonant Converter with Wide Input Voltage Range (넓은 입력전압범위의 고주파수 구동 Dual mode control LLC 공진형 컨버터)

  • Joo, Hyung-Ik;Yang, Jung-Woo;Jo, Kang-Ta;Han, Sang-Kyoo;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • In this paper, a high-frequency dual mode control LLC resonant converter with wide input voltage range is proposed through zero voltage switching (ZVS) under the universal line input voltage and every load conditions. Conventional small power adapter driving should be satisfied with universal line input voltage because it has no power factor correction circuit regulation. The conventional LLC resonant converter for an adapter can reduce the size of transformer in terms of high-frequency driving and ZVS. However, this converter has a disadvantage in terms of design of resonant tank under various input voltages because the frequency modulation range is very wide to satisfy voltage conversion gain. Compared with the conventional one, the proposed LLC converter can be adapted to universal line input voltage and high-frequency driving because it is controlled by pulse width modulation and pulse frequency modulation with control voltage. The validity of the proposed LLC converter is proved through the 60 W prototype.

Multimode Hybrid Control Strategy of LLC Resonant Converter in Applications with Wide Input Voltage Range

  • Li, Yan;Zhang, Kun;Yang, Shuaifei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes a multimode hybrid control strategy that can achieve zero-voltage switching of primary switches and zero-current switching of secondary rectifier diodes in a wide input voltage range for full-bridge LLC resonant converters. When the input voltage is lower than the rated voltage, the converter operates in Mode 1 through the variable-frequency control strategy. When the input voltage is higher than the rated voltage, the converter operates in Mode 2 through the VF and phase-shift control strategy until the switching frequency reaches the upper limit. Then, the converter operates in Mode 3 through the constant-frequency and phase-shift control strategy. The secondary-side diode current will operate in the discontinuous current mode in Modes 1 and 3, whereas it will operate in the boundary current mode in Mode 2. The current RMS value and conduction loss can be reduced in Mode 2. A detailed theoretical analysis of the operation principle, the voltage gain characteristics, and the realization method is presented in this paper. Finally, a 500 W prototype with 100-200 V input voltage and 40 V output voltage is built to verify the feasibility of the multimode hybrid control strategy.

Study of Flyback Switching Power Supply With Very Wide Input Voltage Range (매우 넓은 입력전압 범위를 갖는 스위치모드 플라이백 파워서플라이에 대한 연구)

  • La, Jae-Du;Lee, Chun-Taek;Park, Hyung-Nam;Lee, Yong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1008-1009
    • /
    • 2015
  • An emergency diesel generator system is an independent source of power that supports important electrical systems on loss of normal power supply. AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage at a nominal constant voltage level. Specially, a power supply for the AVR must be operated at the very wide input range. In this paper, a flyback power supply with very wide input voltage range is proposed.

  • PDF

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.

A Study on Optimal Selection of Inductance for Power Factor Improvement of Buck AC/DC LED Driver With Wide Input Voltage Range (입력 전압 범위가 넓은 벅 AC/DC LED 구동기의 역률 개선을 위한 최적 인덕턴스 선택에 관한 연구)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.302-305
    • /
    • 2021
  • Selection of the optimal inductance for power factor improvement of a buck AC/DC light-emitting diode (LED) driver with wide input voltage range is described in this study. The power factor change based on the slope compensation is obtained for various normalized output current (NOC) values using discrete-time domain analysis. The possibility of implementing constant slope compensation is described using power factor curves for various NOC values. NOC = 0.5 is chosen for the value of inductance with consideration for the simple implementation and reduction of inductor size. Experimental results of the inductance corresponding to NOC = 0.5 are presented.

Wide Output Range AC/DC Converter for Rechargeable Battery of Electric Vehicle (광대역 출력을 가지는 전기자동차 배터리 충전용 AC/DC 컨버터)

  • Kim, Young-il;Kim, Hong-jung;Jun, Bum-su;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.73-74
    • /
    • 2016
  • This paper proposes a wide output range AC/DC converter for a rechargeable battery of electric vehicle. In the proposed wide output range AC/DC converter for rechargeable battery of electric vehicle, the main transformer in the DC/DC stage is divided by two. Therefore, if the switch is connected to the middle tap, then half of the maximum voltage is applied. Otherwise, it can be applied the full range of the high voltage by connecting the switch to the whole tab. And also, it is designed to have a wide output voltage range by applying Vin/2 made by changing the full-bridge to half-bridge by using the bridge change switch of the input stage. As it can be supplied the wide range output voltage with a single module, it has the advantage of space utilization and cost reduction effect.

  • PDF