• 제목/요약/키워드: Wide Band-gap

검색결과 245건 처리시간 0.025초

산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론 (Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory)

  • 김대희;이가원;김영철
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

TiO2 전극 표면의 전자상태 계산 (Calculation on Surface Electronic State of $TiO_2$ Electrode)

  • 이동윤;이원재;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.259-262
    • /
    • 2003
  • The surface electronic state of rutile $TiO_2$, which is an oxide semiconductor and has a wide band gap of 3.1 $\sim$ 3.5 eV, was calculated by DV-$X_{\alpha}$ method, which is a sort of the first principle molecular orbital method and uses Hartre-Fock-Slater approximation. The $[Ti_{15}O_{56}]^{-52}$ cluster model was used for the calculation of bulk state and the $[OTi_{11}O_{34}]^{-24}$ model for the surface state calculation. After calculations, the energy level diagrams and the deformation electron density distribution map were compared in both models. As results, it was identified that the surface energy levels are found between the valence and conduction band of bulk $TiO_2$ on the surface area. The energy values of these surface-induced levels are lower than conduction band of bulk $TiO_2$ by 0.1 $\sim$ 1 eV. From this fact, it is expected that the surface energy levels act as donar levels in n-type semiconductor.

  • PDF

In0.27Ga0.73N/GaN 다중 양자우물 구조에 대한 광전기적 특성 (Optoelectronics Properties of In0.27Ga0.73N/GaN Multi-Quantum-Well Structure)

  • 박헌보;배인호;김기홍
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.489-492
    • /
    • 2007
  • Temperature and injection current dependence of elctroluminescence(EL) spectral intensity of the $In_{0.27}Ga_{0.73}N/GaN$ multi-quantum-well(MQW) have been studied over a wide temperature and as a function of injection current level. EL peaks also show significant broadening into higher photon energy region with the increase of injection current. This is explained by the band-filling effect. When temperature is slightly increased to 300 from 15 K, the EL emission peak showed red-blue-red shift. It can be explained by the carrier localization by potential fluctuation of multiple quantum well and band-gap shrinkage as temperature increase. It is found that a temperature-dependent variation pattern of the EL efficiency under very low and high injection currents show a drastic difference. This unique EL efficiency variation pattern with temperature and current is explained field effects due to the driving forward bias in presence of internal(piezo and spontaneous polarization) fields.

SRR-DGS 공진기를 이용한 저역통과 필터 설계 (Low Pass Filter Design using the SRR-DGS Resonator)

  • 김종화;김기래;김성훈
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.257-262
    • /
    • 2015
  • 본 논문에서는 SRR-DGS 공진기를 제안하고 그것의 등가회로를 해석하여 저역통과 필터 설계에 적용하였다. 기존의 덤벨형 DGS 구조로 된 것과 비교하였을 때 제안된 구조는 차단주파수 근처에서 스커트 특성과 저주파 대역의 평탄도 특성이 우수하였다. 기본적인 SRR-DGS 셀에서 등가회로의 병렬 커패시턴스를 증가하기 위해 전송선로에 개방 스터브를 추가함으로써 대역외 고주파 억압 특성을 개선하였다. 이와 같은 등가회로의 해석적인 방법으로 개선된 SRR-DGS 셀의 특성이 연구되어 차단 특성이 우수하고 고주파 억압 특성이 35dB이상인 저역통과 필터의 설계에 적용되었다. 그리고 공진기의 측면 길이와 링 간격 등과 같은 물리적 크기와 전송특성과의 관계를 해석하여 나타내었다. 개방 스터브의 면적을 증가하면 차단 주파수 이상의 대역에서 억압 특성이 개선되었다. SRR-DGS에 대해 유도해낸 등가 파라미터와 회로의 정확성을 검증하기 위해 SRR-DGS셀을 이용한 저역통과 필터를 설계하고 제작하였다.

염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발 (Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells)

  • 박정현;김재홍;안광순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

태양광과 물로부터 수소생산을 위한 광전기화학전지의 CdSe/$TiO_2$ 전극 (CdSe/$TiO_2$ electrode of photoelectrochemical[PEC] cell for hydrogen production from water using solar energy)

  • 이은호;정광덕;주오심
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.130-135
    • /
    • 2005
  • Cadmium selenide is one of the group IIb-VI compounds, which is the promising semiconductor material due to its wide range of technological applications in optoelectronic devices such as photoelectrochemical cells, solid state solar cells, thin film photoconductors etc. CdSe has optical band gap of 1.7-1.8eV and proper conduction band edge for water splitting. CdSe films are coated with small thickness(20-50nm) nanocrystalline $TiO_2$ film by electrodeposition or chemical bath deposition methods and PEC properties of CdSe and CdSe/$TiO_2$ sandwich structure are studied. The photoactivity of CdSe and CdSe/$TiO_2$ films deposited on titanium substrate is studied in aqueous electrolyte of 1M NaOH solution. Photocurrent and photovoltage obtained were of the order of 2-4 mA/$cm^2$ and 0.5V, respectively, under the intensity of illumination of 100 mW/$cm^2$.

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

용액 증착법으로 증착된 CdS 박막의 제조와 고상과 액상 화합제에 따른 표면 특성 비교 (Advanced Transmittance and Surface-Morphology of CdS thin films prepared by chemical bath deposition using various complexing agents for solar cells)

  • 유범근;김진상;박용욱;최두진;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.456-456
    • /
    • 2008
  • In the past few years, the deposition and characterization of cadmium sulfide semiconducting thin films has received a considerable amount of interest due to their potential application in the area of electronic and opto-electronic devices fabrications. Polycrystalline CdS thin films posses good optical transmittance, wide band-gap and electrical properties makes it as one of the ideal material for their application to solar cell fabrication. Cadmium sulfate thin films were deposited by the chemical bath deposition method using tartaric acid and triethanolamine as a complexing agent. Deposition parameters such as pH, temperature, deposition time and concentration of the reactant species were optimized so as to obtain reflecting, good adherent uniform thin films on the glass substrate. Reaction mechanism of the thin film formation is also reported. The crystallographic structure and the crystallite size were studied by the X-ray diffraction pattern. The optical band-gap of deposited film is identified by measuring the transmittance in the visible region. Temperature dependence of resistivity confirmed the semiconducting behavior of the film. Scanning electron micrographs (SEM) showed the presence of grain particles of size 50 nm.

  • PDF

재현성 있는 메조포러스 TiO2 박막의 제조에 대한 연구 (Reproducible Synthesis of Periodic Mesoporous TiO2 Thin Film)

  • 허재영;이형익;박영권;주오심;배귀남;김지만
    • Korean Chemical Engineering Research
    • /
    • 제44권4호
    • /
    • pp.399-403
    • /
    • 2006
  • 현재 넓은 표면적과 메조기공 뿐만 아니라 $TiO_2$의 넓은 band gap과 그 광학 활성 등으로 인하여 크게 각광받고 있는 메조포러스 $TiO_2$ 박막을 합성하기 위해 여러 가지 합성방법이 제시되고 있으나, 그 합성이 습도나 온도 등의 여러조건에 따라 크게 영향을 받아 재현성이 떨어진다는 치명적인 문제점이 제기되어 왔다. 이는 합성 용액 내에서 $TiO_2$ 전구체가 가수분해 및 축합반응을 하면서 구조유도체와의 자기조립에 의한 나노구조물 형성하는 과정에서 $TiO_2$의 전구체가 온도나 습도 등 주변의 영향을 많이 받기 때문이다. 본 연구에서는 2차원 구조의 메조기공을 가진 $TiO_2$ 박막을 재현성 있게 얻을 수 있는 실험 조건을 찾고자 하였다. 이를 위해 촉매인 HCl과 $TiO_2$ 전구체의 몰비 그리고 $TiO_2$ 전구체와 P-123의 몰비 등의 합성 조건뿐 아니라 코팅과정 도중이나 이후의 습도와 온도가 미치는 영향에 대한 실험을 수행하였고 그 특성을 XRD와 TEM 등으로 분석하였다.

고온에서 급속열산화법으로 형성된 탄탈륨산화막의 수소응답특성 (Hydrogen Response Characteristics of Tantalum Oxide Layer Formed by Rapid Thermal Oxidation at High Temperatures)

  • 김성진
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.19-24
    • /
    • 2023
  • 약 1.12 ev의 밴드갭 에너지를 갖는 실리콘은 동작 온도가 250 ℃ 이하로 제한되어, 밴드갭 에너지가 큰 SiC 기판을 이용한 MIS(metal-insulator-semiconductor) 구조의 시료를 제작하여 고온에서 수소 응답 특성을 고찰하였다. 적용된 유전체 박막은 수소가스에 대해 침투성이 강하고 고온에서 안정성을 보이는 탄탈륨 산화막(Ta2O5)으로, 스퍼터링으로 증착된 탄탈륨(Ta)을 900 ℃의 온도에서 급속열산화법(RTO)으로 형성하였다. 이렇게 형성된 탄탈륨 산화막은 TEM, SIMS, 및 누설전류 측정을 통해, 두께, 원소들의 깊이 분포 및 절연특성을 분석하였다. 수소가스 응답특성은 0부터 2,000 ppm의 수소가스 농도에 대해, 상온으로부터 200와 400 ℃의 온도에서 정전용량의 변화로 평가하였다. 그 결과, 시료로부터 감도가 우수하고, 약 60초의 응답 시간을 나타내는 특성을 확인하였다.