DOI QR코드

DOI QR Code

Low Pass Filter Design using the SRR-DGS Resonator

SRR-DGS 공진기를 이용한 저역통과 필터 설계

  • Received : 2015.08.01
  • Accepted : 2015.08.10
  • Published : 2015.08.30

Abstract

In this paper, the split-ring DGS resonator is proposed and its equivalent circuit are analyzed to design the low pass filter. Compared with the conventional dumbell DGS cell, this structure has a flat fluctuation in low frequency range and a sharp slop at edge frequency. The out-band suppression of the SRR-DGS cell can be improved by placing the open stubs on the conductor line which operates as parallel capacitances. Making use of equivalent circuit analytical method, the characteristics of the improved SRR DGS cell are investigated and applied to design compact low pass filter, which has a low in-band loss, sharp slop and high suppression of more than 35dB within a wide out-band frequency range. The dependence of the transmission characteristic on the dimension of a split ring, such as side-length and split-gap, is analyzed in detail. In addition, an improved SRR DGS cell model with open stubs loaded on the conductor line is then presented to improve the out-band suppression. By using the equivalent-circuit analytical method, an S-band microstrip low-pass filter with perfect low-pass characteristic and high out-band suppression is designed and fabricated.

본 논문에서는 SRR-DGS 공진기를 제안하고 그것의 등가회로를 해석하여 저역통과 필터 설계에 적용하였다. 기존의 덤벨형 DGS 구조로 된 것과 비교하였을 때 제안된 구조는 차단주파수 근처에서 스커트 특성과 저주파 대역의 평탄도 특성이 우수하였다. 기본적인 SRR-DGS 셀에서 등가회로의 병렬 커패시턴스를 증가하기 위해 전송선로에 개방 스터브를 추가함으로써 대역외 고주파 억압 특성을 개선하였다. 이와 같은 등가회로의 해석적인 방법으로 개선된 SRR-DGS 셀의 특성이 연구되어 차단 특성이 우수하고 고주파 억압 특성이 35dB이상인 저역통과 필터의 설계에 적용되었다. 그리고 공진기의 측면 길이와 링 간격 등과 같은 물리적 크기와 전송특성과의 관계를 해석하여 나타내었다. 개방 스터브의 면적을 증가하면 차단 주파수 이상의 대역에서 억압 특성이 개선되었다. SRR-DGS에 대해 유도해낸 등가 파라미터와 회로의 정확성을 검증하기 위해 SRR-DGS셀을 이용한 저역통과 필터를 설계하고 제작하였다.

Keywords

References

  1. Yablonovitch, E., T. J. Gmitter, and K.M.Leung, "Photonic band structure: The face centered cubic case employing nonspherical atoms," Physical Review Letters, Vol.67, No. 17,2295-2298,1991. https://doi.org/10.1103/PhysRevLett.67.2295
  2. Park, J. I., C. S. Kim, J. Kim, et al., "Modeling of a photonic bandgap and its application for the low-pass filter design." Singapore: Asia Pacific Microwave Conference, 1999.
  3. KIm, C. S., J.I.Park,A.Dal,et al., "A novel 1-D periodic defected ground structure for planar circuits," IEEE Microwave Guided Wave Lett., Vol. 10,No. 4, 131-133, 2000. https://doi.org/10.1109/75.846922
  4. Pendry, J. B., A. J. Holden, D. J. Robbins, et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans.Microwave Theory Tech., Vol. 47, No. 11, 2075-2084,1999. https://doi.org/10.1109/22.798002
  5. Gay-Balmax,P.and O.J.F.Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics, Vol. 92, No. 5, 2929-2936, 2002. https://doi.org/10.1063/1.1497452
  6. Markos,P.and C.M.Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Physical Review E., Vol. 65, 036622-1-036622-8, 2002. https://doi.org/10.1103/PhysRevE.65.036622
  7. Bonache, J., F. Marin, F. Falcone, et al., "Application of complementary split-ring resonators to the design of compact narrow band-pass structures in microstrip technology," Microwave and Optical Technology Letters, Vol. 46,No. 5, 508-512,2005. https://doi.org/10.1002/mop.21031