• 제목/요약/키워드: Wide Band-gap

검색결과 245건 처리시간 0.026초

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • 전기전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

차세대 파워디바이스 SiC/GaN의 산업화 및 학술연구동향 (Commercialization and Research Trends of Next Generation Power Devices SiC/GaN)

  • 조만;구영덕
    • 에너지공학
    • /
    • 제22권1호
    • /
    • pp.58-81
    • /
    • 2013
  • 탄화규소(SiC)나 질화갈륨(GaN)과 와이드갭 반도체를 이용한 전력소자의 생산기술이 크게 발전하여 그간 널리 사용되어 온 실리콘(Si) 전력소자와 비교하여 작동전압, 스위칭 속도 및 on-저항 등이 크게 향상되어 몇 개 기업은 제품화를 시작하였다. 내압 등 기술적 과제 등을극복하여 산업화를 하고자하는 움직임을 소개하고 아울러 연구동향도 분석한다.

Optical Configurations for an Achromatic Transflective Liquid Crystal Cell

  • Lee, Gak-Seok;Kim, Jae-Chang;Yoon, Tae-Hoon;Kim, Young-Sik;Kang, Tae-Hoon;Kang, In-Byeong
    • Journal of Information Display
    • /
    • 제7권1호
    • /
    • pp.19-24
    • /
    • 2006
  • We propose optical configurations of a double-cellgap liquid crystal cell for transflective displays with wide viewing angle and high contrast ratio. The reflective part is designed in the wide-band quarter wave structure to achieve good dark state. For the transmissive part, the compensation method is applied to achieve the super-achromatic dark state, and three switching methods are used : which are vertical switching, horizontal switching to $30^{\circ}$and horizontal switching to $120^{\circ}$, to achieve the bright state.

Anodic formation of TiO2 nanoporous structures at high temperature in a glycerol/phosphate electrolyte

  • 이기영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.95.2-95.2
    • /
    • 2017
  • Anodic TiO2 nanostructures have wide applications due to their various functional properties such as wide band-gap, chemical stability, and anti-corrosiveness. In order to enhance the properties, several approaches to fabricate TiO2 structures have been developed. Especially, TiO2 nanotube arrays prepared by anodization in a fluoride electrolyte show impressive properties for dye sensitized solar cells1 and photocatalyst. In this presentation, we introduce new types of TiO2 nanostructures beyond TiO2 nanotubes that are fabricated by anodization at high temperature in a glycerol/phosphate electrolyte. We show that depending on the anodization parameters different self-organized morphologies - of highly aligned, high aspect ratio oxide structures can be formed. Critical factor for growth and the use for dye sensitized solar cells and photocatalyst will be discussed.

  • PDF

다양한 파장폭의 가시광선에 의해 중합된 복합레진의 미세경도와 변연누출도 (MICROHARDNESS AND MICROLEAKAGE OF COMPOSITE RESIN CURED BY VISIBLE LIGHT WITH VARIOUS BAND OF WAVELENGTH)

  • 박수만;이재용;한승렬;하상윤;신동훈
    • Restorative Dentistry and Endodontics
    • /
    • 제27권4호
    • /
    • pp.403-410
    • /
    • 2002
  • Several ways of curing are being tried to improve material's properties and reduce marginal gap. However, all are considering about the pattern of light intensity. It was noted from the preliminary study the change of light wavelength from filter changing may give an impact on material's property and microleakage. The object of this study was to verify the effect of filters with various wavelength width on the microhardness and microleakage of composite resin ; hybrid type of DenFil and submicron hybrid type of Esthet X. Composite resins were cured using 3 kinds of filter; narrow-banded(465-475 nm), mid-banded(430-470 nm), wide-banded(400-500 nm). After the estimation of microhardness. degree of dye penetration and the maximum gap from SEM evaluation were done between 4 groups that showed no difference in microhardness value of the lower surface . The results were as follows : 1 Adequate microhardness could not be gained with a narrow-banded filter irrespective of curing time. At the upper surface, DenFil should be polymerized with middle or wide-banded filter for 20 seconds at least, while Esthet X be col$.$ed with middle or wide-banded filter for 30 seconds at least to get simitar hardness value to control group. 2. There was little dye penetration in enamel margin, but all dentin margins skewed much more dye penetration irrespective of curing conditions. Although there was no statistical difference, groups cured with mid-banded filter for 40 seconds and with wide-width filter for 20 seconds showed relatively less dye penetration. 3. It was revealed from the SEM examination that group cured with wide-banded filter had the smallest gap without statistical significance. Spearman's rho test showed that the correlation between the results of dye penetration and SEM examination was very low. From these results, it could be concluded that curing with wide-width filter would be better than the other techniques, even though the curing technique using mid-width filter seems to have its own unique advantage.

Analysis of Decoupling Capacitor for High Frequency Systems

  • Jung, Y.C.;Hong, K.K.;Kim, H.M.;Hong, S.K.;Kim, C.J.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.437-438
    • /
    • 2007
  • In this paper a embedded decoupling capacitor design with gap structure will be discussed. A novel structure is modeling and analization by High Frequency Structure Simulator (HFSS). Proposed capacitor have $2m{\times}2m$ in rectangular shape. The film thickness of copper/dielectric film/substrate is respectively 35um/20um/35um. A dielectric layer of BaTiO3/epoxy has the relative permittivity of 25. Compare of the planar decoupling capacitor, capacitance densities of this structure in the range of $55{\mu}F$/mm2 have been obtained with 50um gap while capacitance densities of planar structure $55{\mu}F$/mm2 in the same size. The frequency dependent behavior of capacitors is numerically extracted over a wide frequency bandwidth 500MHz-7GHz. The decoupling capacitor can work at high frequency band increasing the gap size.

  • PDF

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나 (Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band)

  • 고진현;김건균;이승엽;이종익
    • 한국정보통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.874-879
    • /
    • 2016
  • 본 논문에서는 직사각형 및 삼각형 기생 패치를 이용한 광대역 마이크로스트립 패치 안테나를 제안하였다. 직사각형 마이크로스트립 패치 위에 직사각형 및 삼각형 모양의 기생 패치들을 적층하여 860MHz대역에서 광대역 특성을 얻었다. 주 방사부인 마이크로스트립안테나와 기생 패치와의 효과적인 결합은 이들 사이에 두꺼운 공기층을 두어 구현하였다. 또한, 이들 공기층 두께와 기생 패치의 위치는 광대역 정합에 중요한 요소임을 알 수 있었다. 제안된 안테나는 향후 소형 트랜시버에 적용하기 위해 $119mm{\times}109mm$ 크기의 소형 접지면 위에 설계 및 제작되었다. FR4기판에 제작된 안테나의 임피던스 대역은 818~919MHz(11.7%)이다. 방사패턴은 기존 마이크로스트립 패치 안테나와 유사했으며, 최대 이득은 주파수 824MHz에서 2.11dBi로 측정되었다.

이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구 (A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell)

  • 김용준;김선보;김영국;조영현;박창균;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제30권3호
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

GBN/SSN 억제를 위한 이종 셀 EBG 구조를 갖는 전원면 (A Power Plane Using the Hybrid-Cell EBG Structure for the Suppression of GBN/SSN)

  • 김동엽;주성호;이해영
    • 한국전자파학회논문지
    • /
    • 제18권2호
    • /
    • pp.206-212
    • /
    • 2007
  • 본 논문에서는 넓은 영역에서 GBN/SSN 억제 특성을 보이는 이종 셀 EBG 구조를 이용한 새로운 전원면 구조를 제안하였다. 제안된 구조는 -30 dB 이하의 삽입 손실로 정의되는 저지 대역이 GBN의 에너지가 집중적으로 분포하는 수 백 MHz에서 시작하며 약 7.9 GHz의 넓은 대역폭을 갖는다. 본 구조의 특징은 인덕턴스를 강화하는 나선형 연결 선로와 분산적 LC 회로의 주기를 줄이는 이종 셀을 추가한 것이다. 그 결과 -30 dB 저지 대역의 저주파에서의 차단 주파수가 낮아짐은 물론 대역폭이 넓어진 특성을 보였다. 또한, 전원면과 접지면 사이의 구조적 공진 모드가 현격히 억제되었으며 평행판 도파관에 비해 낮은 EMI 특성을 보였다.