• Title/Summary/Keyword: Wide Band-gap

Search Result 245, Processing Time 0.027 seconds

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

Commercialization and Research Trends of Next Generation Power Devices SiC/GaN (차세대 파워디바이스 SiC/GaN의 산업화 및 학술연구동향)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.58-81
    • /
    • 2013
  • Recently, the technological progress in manufacturing power devices based on wide bandgap materials, for example, silicon carbide(SiC) or gallium nitride(GaN), has resulted in a significant improvement of the operating-voltage range and switching speed and/or specific on resistance compared with silicon power devices. This paper will give an overview of the status on The Next generation Power Devices such as SiC/GaN with a focus on commercialization and research.

Optical Configurations for an Achromatic Transflective Liquid Crystal Cell

  • Lee, Gak-Seok;Kim, Jae-Chang;Yoon, Tae-Hoon;Kim, Young-Sik;Kang, Tae-Hoon;Kang, In-Byeong
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • We propose optical configurations of a double-cellgap liquid crystal cell for transflective displays with wide viewing angle and high contrast ratio. The reflective part is designed in the wide-band quarter wave structure to achieve good dark state. For the transmissive part, the compensation method is applied to achieve the super-achromatic dark state, and three switching methods are used : which are vertical switching, horizontal switching to $30^{\circ}$and horizontal switching to $120^{\circ}$, to achieve the bright state.

Anodic formation of TiO2 nanoporous structures at high temperature in a glycerol/phosphate electrolyte

  • Lee, Gi-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.95.2-95.2
    • /
    • 2017
  • Anodic TiO2 nanostructures have wide applications due to their various functional properties such as wide band-gap, chemical stability, and anti-corrosiveness. In order to enhance the properties, several approaches to fabricate TiO2 structures have been developed. Especially, TiO2 nanotube arrays prepared by anodization in a fluoride electrolyte show impressive properties for dye sensitized solar cells1 and photocatalyst. In this presentation, we introduce new types of TiO2 nanostructures beyond TiO2 nanotubes that are fabricated by anodization at high temperature in a glycerol/phosphate electrolyte. We show that depending on the anodization parameters different self-organized morphologies - of highly aligned, high aspect ratio oxide structures can be formed. Critical factor for growth and the use for dye sensitized solar cells and photocatalyst will be discussed.

  • PDF

MICROHARDNESS AND MICROLEAKAGE OF COMPOSITE RESIN CURED BY VISIBLE LIGHT WITH VARIOUS BAND OF WAVELENGTH (다양한 파장폭의 가시광선에 의해 중합된 복합레진의 미세경도와 변연누출도)

  • Park, Soo-Man;Lee, Jae-Yong;Han, Seung-Ryul;Ha, Sang-Yoon;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.403-410
    • /
    • 2002
  • Several ways of curing are being tried to improve material's properties and reduce marginal gap. However, all are considering about the pattern of light intensity. It was noted from the preliminary study the change of light wavelength from filter changing may give an impact on material's property and microleakage. The object of this study was to verify the effect of filters with various wavelength width on the microhardness and microleakage of composite resin ; hybrid type of DenFil and submicron hybrid type of Esthet X. Composite resins were cured using 3 kinds of filter; narrow-banded(465-475 nm), mid-banded(430-470 nm), wide-banded(400-500 nm). After the estimation of microhardness. degree of dye penetration and the maximum gap from SEM evaluation were done between 4 groups that showed no difference in microhardness value of the lower surface . The results were as follows : 1 Adequate microhardness could not be gained with a narrow-banded filter irrespective of curing time. At the upper surface, DenFil should be polymerized with middle or wide-banded filter for 20 seconds at least, while Esthet X be col$.$ed with middle or wide-banded filter for 30 seconds at least to get simitar hardness value to control group. 2. There was little dye penetration in enamel margin, but all dentin margins skewed much more dye penetration irrespective of curing conditions. Although there was no statistical difference, groups cured with mid-banded filter for 40 seconds and with wide-width filter for 20 seconds showed relatively less dye penetration. 3. It was revealed from the SEM examination that group cured with wide-banded filter had the smallest gap without statistical significance. Spearman's rho test showed that the correlation between the results of dye penetration and SEM examination was very low. From these results, it could be concluded that curing with wide-width filter would be better than the other techniques, even though the curing technique using mid-width filter seems to have its own unique advantage.

Analysis of Decoupling Capacitor for High Frequency Systems

  • Jung, Y.C.;Hong, K.K.;Kim, H.M.;Hong, S.K.;Kim, C.J.
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.437-438
    • /
    • 2007
  • In this paper a embedded decoupling capacitor design with gap structure will be discussed. A novel structure is modeling and analization by High Frequency Structure Simulator (HFSS). Proposed capacitor have $2m{\times}2m$ in rectangular shape. The film thickness of copper/dielectric film/substrate is respectively 35um/20um/35um. A dielectric layer of BaTiO3/epoxy has the relative permittivity of 25. Compare of the planar decoupling capacitor, capacitance densities of this structure in the range of $55{\mu}F$/mm2 have been obtained with 50um gap while capacitance densities of planar structure $55{\mu}F$/mm2 in the same size. The frequency dependent behavior of capacitors is numerically extracted over a wide frequency bandwidth 500MHz-7GHz. The decoupling capacitor can work at high frequency band increasing the gap size.

  • PDF

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band (직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.874-879
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed and fabricated on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. The fabricated antenna on an FR4 substrate shows that the minimum measured return loss is below -11.68dB at 824 MHz and an impedance band of 818~919 MHz(11.7%) at 10dB return loss level. The measured radiation patterns are similar to those of a conventional patch antenna with maximum gain of 2.11 dBi at 824 MHz.

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell (이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구)

  • Kim, Yongjun;Kim, Sunbo;Kim, Youngkuk;Cho, Young Hyun;Park, Chang-kyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

A Power Plane Using the Hybrid-Cell EBG Structure for the Suppression of GBN/SSN (GBN/SSN 억제를 위한 이종 셀 EBG 구조를 갖는 전원면)

  • Kim, Dong-Yeop;Joo, Sung-Ho;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.206-212
    • /
    • 2007
  • In this paper, a novel power/ground plane using the hybrid-cell electromagnetic band-gap(EBG) structure is proposed for the wide-band suppression of the ground bound noise(GBN) or simultaneous switching noise(SSN). The -30 dB stopband of the proposed structure starts from a few hundred MHz where the GBN/SSN energy is dominant. The distinctive features of this new structure are the thin spiral strip line and hybrid-cells. They realize the enhanced inductance and the shorter period of the EBG lattice. As a result, the lower cut-off frequency and bandwidth of the -30 dB stopband becomes lower and wider, respectively. In addition, the proposed structure has smaller number of resonance modes between power/ground planes and performs a low EMI behavior compared with the reference board.