• Title/Summary/Keyword: Wi-fi

Search Result 1,002, Processing Time 0.029 seconds

Performance Enhancement of Fast-Moving Object by Location Scheme in FMIP (FMIP에서 위치 관리 기법을 사용한 고속 이동체의 이동 성능 개선 방법)

  • Kim, Mi-Young;Mun, Young-Song
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.175-183
    • /
    • 2008
  • Wi-Fi defines the procedure to search an AP, authenticate both station and AP, and associate the new BSS or ESS which enables the link layer handoff. One of the problems for hotspot service of Wi-Fi is "passing-object", Wi-Fi describes the messages exchanges between two neighboring APs in BSS or ESS. If the station passes through the neighboring APs before completing link-layer handoff, the path where the tunneled packets should be sent is lost. In this paper, we propose to integrate the positioning entity in a service domain to keep track the high-speed movement.

  • PDF

Study of iPhone Interface for Remote Robot Control Based on WiFi Communication (WiFi 통신 기반의 로봇제어를 위한 아이폰 인터페이스 연구)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.669-674
    • /
    • 2012
  • This study presents the remote control of a mobile robot using iPhone based on Wi-Fi communication. The paper proposes the following set of user interfaces : acceleration mode, arrow touch mode, and jog-shuttle mode. To evaluate the proposed three interfaces, a virtual robot is controlled in a monitor to follow a referenced trajectory using iPhone. In simulation, the standard deviation and summed errors are analysed for showing good and weak points of the proposed three interfaces. The proposed interface replace an additional remote controller requiring cost with a cellular phone. Results of an experiment show that the proposed interfaces can be effectively used for remote robot control.

A study on the discriminant analysis of node deployment based on cable type Wi-Fi in indoor (케이블형 Wi-Fi 기반 실내 공간의 노드 배치 판별 분석에 관한 연구)

  • Zin, Hyeon-Cheol;Kim, Won-Yeol;Kim, Jong-Chan;Kim, Yoon-Sik;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.836-841
    • /
    • 2016
  • An indoor positioning system using Wi-Fi is essential to produce a radio map that combines the indoor space of two or more dimensions, the information of node positions, and etc. in processing for constructing the radio map, the measurement of the received signal strength indicator(RSSI) and the confirmation of node placement information counsume substantial time. Especially, when the installed wireless environment is changed or a new space is created, easy installation of the node and fast indoor radio mapping are needed to provide indoor location-based services. In this paper, to reduce the time consumption, we propose an algorithm to distinguish the straight and curve lines of a corridor section by RSSI visualization and Sobel filter-based edge detection that enable accurate node deployment and space analysis using cable-type Wi-Fi node installed at a 3 m interval. Because the cable type Wi-Fi is connected by a same power line, it has an advantage that the installation order of nodes at regular intervals could be confirmed accurately. To be able to analyze specific sections in space based on this advantage, the distribution of the signal was confirmed and analyzed by Sobel filter based edge detection and total RSSI distribution(TRD) computation through a visualization process based on the measured RSSI. As a result to compare the raw data with the performance of the proposed algorithm, the signal intensity of proposed algorithm is improved by 13.73 % in the curve section. Besides, the characteristics of the straight and the curve line were enhanced as the signal intensity of the straight line decreased by an average of 34.16 %.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.

Wibro / WiFi dual-band antenna design for wireless broadband communication (무선 광대역 통신을 위한 Wibro/WiFi 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • In this paper, we design a Wibro / WiFi dual band microstrip antenna for wireless broadband communication. The proposed antenna is designed to have the characteristics of FR-4 (er = 4.3), size of $40[mm]{\times}40[mm]$, and usable in 2.31[GHz] and 5.8[GHz] bands of Wibro / WiFi. The simulation is performed by CST Microwave Studio 2014 The simulation result shows that the gain is 2.308[dB] at 2.31[GHz] and 2.985[dB] at 5.8[GHz]. S-parameters were also found to be less than -10[dB] (WSWR2: 1) in the desired frequency band, and a small number of parameters and a compact antenna were designed. It is expected that many users will use the mobile communication antenna for accurate and fast communication for smooth wireless broadband communication.

  • PDF

Development of a Meeting Android Application Based on Real-Time Remote Screen Control (실시간 원격화면 제어 기반의 회의 지원 안드로이드 앱 개발)

  • Jung, Jae Yoon;Kim, Tae-Hwa;Jung, Hyun-Woo;Lee, Ji-Hoon;Kim, Dong Kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.411-413
    • /
    • 2012
  • It is noticeable that the number of newly registered Android applications increases rapidly. Such a recent trend indicates the Android platform is spreading globally. The ongoing platform upgrade might be one of the main reasons of the popularity of the Android mobile platform. Android platform 4.0 or later provides WiFi-Direct APIs that allow smart devices to communicate with each other without intermediate media. In this paper, we propose design and implementation techniques for small-scale impromptu meeting applications based on WiFi-Direct. The proposed meeting application can be used in a situation when one is difficult to connect the Internet. It also provides meeting data sharing capabilities, noting functionality, real-time remote screen control, and grouping of meeting participants. Our development results have demonstrated that the Android WiFi-Direct APIs can be effectively applied to impromptu conferencing mobile applications.

  • PDF

Probabilistic Method to Enhance ZigBee Throughput in Wi-Fi Interference Environment (Wi-Fi 간섭 환경에서 ZigBee 전송률 향상을 위한 확률적 방법)

  • Lee, Sujin;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.606-613
    • /
    • 2014
  • The Internet of Things (IoT), which has recently attracted attention as next-generation IT industry, is based on a wired and wireless network platform that can connect various Things. However, it is challenging to implement the IoT platform because of the heterogeneity of the network. Particularly, the ZigBee transmission may be significantly harmed due to Wi-Fi with the relatively much higher power, and this is one of the reason making the platform implementation difficult. In this paper, the ZigBee transmission is measured and analyzed by the BEB algorithm for finding the slot time when ZigBee can transmit, and an actual transmission happens stochastically depending on the network environment. The simulation results show that it guarantees high success rate of the ZigBee transmission by overcoming Wi-Fi interference in the 2.4 GHz frequency band.

Investigation and Testing of Location Systems Using WiFi in Indoor Environments

  • Retscher, Guenther;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.83-88
    • /
    • 2006
  • Many applications in the area of location-based services and personal navigation require nowadays the location determination of a user not only in outdoor environment but also indoor. To locate a person or object in a building, systems that use either infrared, ultrasonic or radio signals, and visible light for optical tracking have been developed. The use of WiFi for location determination has the advantage that no transmitters or receivers have to be installed in the building like in the case of infrared and ultrasonic based location systems. WiFi positioning technology adopts IEEE802.11x standard, by observing the radio signals from access points installed inside a building. These access points can be found nowadays in our daily environment, e.g. in many office buildings, public spaces and in urban areas. The principle of operation of location determination using WiFi signals is based on the measurement of the signal strengths to the surrounding available access points at a mobile terminal (e.g. PDA, notebook PC). An estimate of the location of the terminal is then obtained on the basis of these measurements and a signal propagation model inside the building. The signal propagation model can be obtained using simulations or with prior calibration measurements at known locations in an offline phase. The most common location determination approach is based on signal propagation patterns, namely WiFi fingerprinting. In this paper the underlying technology is briefly reviewed followed by an investigation of two WiFi positioning systems. Testing of the system is performed in two localization test beds, one at the Vienna University of Technology and the second at the Hong Kong Polytechnic University. First test showed that the trajectory of a moving user could be obtained with a standard deviation of about ${\pm}$ 3 m.

  • PDF

WhoAmI: Personal Information Sharing Application over WiFi and WiFi Direct (WhoAmI: 와이파이와 와이파이 다이렉트 환경에서의 개인정보 공유 어플리케이션)

  • Kwak, Jun-Seok;Park, Jongmoon;Lee, Myung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.371-378
    • /
    • 2014
  • As people are taking part in more versatile social activities, it becomes more frequent and more important for people to share personal information each other in appropriate level. Unfortunately, although the rapid spread of smart devices and advance of network technologies have brought many applications for information sharing into our hands, they do not provide effective mechanism for sharing personal information on collocated people. In this paper, we introduce an android application named WhoAmI which provides the functionality of sharing personal information on nearby users over Wi-Fi Direct as well as Wi-Fi network environment. According to the predefined access level such as business, community or friend, WhoAmI naturally provides profile information to accessible users. In addition, the information such as music, photo, movie can be effectively shared through the application.

Efficient Wi-Fi Security Protocol Using Dual Tokens (이중토큰을 이용한 효율적인 Wi-Fi 보안 프로토콜)

  • Lee, Byoungcheon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.417-429
    • /
    • 2019
  • WPA2-PSK uses a 4-way handshake protocol based on a shared secret to establish a secure session between a client and an AP. It has various security problems such as eavesdropping attacks and the secure session establishment process is inefficient because it requires multiple interactions between client and AP. The WPA3 standard has recently been proposed to solve the security problem of WPA2, but it is a small improvement using the same 4-way handshake methodology. OAuth 2.0 token authentication is widely used on the web, which can be used to keep an authenticated state of a client for a long time by using tokens issued to an authenticated client. In this paper, we apply the dual-token based randomized token authentication technology to the Wi-Fi security protocol to achieve an efficient Wi-Fi security protocol by dividing initial authentication and secure session establishment. Once a client is authenticated and equipped with dual tokens issued by AP, it can establish secure session using them quickly with one message exchange over a non-secure channel.