• Title/Summary/Keyword: Whole Genome Association

Search Result 82, Processing Time 0.024 seconds

Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits

  • Liu, Zhaohua;Tan, Xiuwen;Wang, Jianying;Jin, Qing;Meng, Xianfeng;Cai, Zhongfeng;Cui, Xukui;Wang, Ke
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1340-1350
    • /
    • 2022
  • Objective: Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods: We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (𝜃π) ratio. Results: The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion: The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.

Effect of Combining Multiple CNV Defining Algorithms on the Reliability of CNV Calls from SNP Genotyping Data

  • Kim, Soon-Young;Kim, Ji-Hong;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.194-199
    • /
    • 2012
  • In addition to single-nucleotide polymorphisms (SNP), copy number variation (CNV) is a major component of human genetic diversity. Among many whole-genome analysis platforms, SNP arrays have been commonly used for genomewide CNV discovery. Recently, a number of CNV defining algorithms from SNP genotyping data have been developed; however, due to the fundamental limitation of SNP genotyping data for the measurement of signal intensity, there are still concerns regarding the possibility of false discovery or low sensitivity for detecting CNVs. In this study, we aimed to verify the effect of combining multiple CNV calling algorithms and set up the most reliable pipeline for CNV calling with Affymetrix Genomewide SNP 5.0 data. For this purpose, we selected the 3 most commonly used algorithms for CNV segmentation from SNP genotyping data, PennCNV, QuantiSNP; and BirdSuite. After defining the CNV loci using the 3 different algorithms, we assessed how many of them overlapped with each other, and we also validated the CNVs by genomic quantitative PCR. Through this analysis, we proposed that for reliable CNV-based genomewide association study using SNP array data, CNV calls must be performed with at least 3 different algorithms and that the CNVs consistently called from more than 2 algorithms must be used for association analysis, because they are more reliable than the CNVs called from a single algorithm. Our result will be helpful to set up the CNV analysis protocols for Affymetrix Genomewide SNP 5.0 genotyping data.

A Whole Genome Association Study on Meat Quality Traits Using High Density SNP Chips in a Cross between Korean Native Pig and Landrace

  • Lee, K.T.;Lee, Y.M.;Alam, M.;Choi, B.H.;Park, M.R.;Kim, K.S.;Kim, T.H.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1529-1539
    • /
    • 2012
  • A whole genome association (WGA) study was performed to detect significant polymorphisms for meat quality traits in an $F_2$ cross population (N = 478) that were generated with Korean native pig sires and Landrace dams in National Livestock Research Institute, Songwhan, Korea. The animals were genotyped using Illumina porcine 60k SNP beadchips, in which a set of 46,865 SNPs were available for the WGA analyses on ten carcass quality traits; live weight, crude protein, crude lipids, crude ash, water holding capacity, drip loss, shear force, CIE L, CIE a and CIE b. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model, after adjusting for sex, sire and slaughter stage as fixed effects. With the significant SNPs for each trait (p<0.001), a stepwise regression procedure was applied to determine the best set of SNPs with the additive and/or dominance effects. A total of 106 SNPs, or quantitative trait loci (QTL) were detected, and about 32 to 66% of the total phenotypic variation was explained by the significant SNPs for each trait. The QTL were identified in most porcine chromosomes (SSCs), in which majority of the QTL were detected in SSCs 1, 2, 12, 13, 14 and 16. Several QTL clusters were identified on SSCs 12, 16 and 17, and a cluster of QTL influencing crude protein, crude lipid, drip loss, shear force, CIE a and CIE b were located between 20 and 29 Mb of SSC12. A pleiotropic QTL for drip loss, CIE L and CIE b was also detected on SSC16. These QTL need to be validated in commercial pig populations for genetic improvement in meat quality via marker-assisted selection.

Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Body Conformation Traits in a Hanwoo Population

  • Alama, M.;Lee, Y.M.;Park, B.L.;Kim, J.H.;Lee, S.S.;Shin, H.D.;Kim, K.S.;Kim, N.S.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.322-329
    • /
    • 2011
  • A whole genome association (WGA) study was conducted to identify quantitative trait loci (QTL) for body conformation traits in Hanwoo cattle. The phenotypes of 497 steers were recorded from the Hanwoo Improvement Center of National Agricultural Cooperative Federation, Seosan, Korea, and analyzed using the Illumina Bovine 50 k SNP chip. A set of 35,987 SNPs that were available in the Hanwoo population was selected from the chip. After adjustments for the effects of year-season of birth, region and sire, phenotypes were regressed on each SNP using a linear regression model. Three hundred nineteen SNPs were detected for the ten conformation traits (p<0.003). For the significant SNPs, stepwise regression procedures were applied to determine best sets of markers. A total of 72 SNPs were selected (p<0.001), for which the sets of 5, 9, 10, 9, 8, 11, 4, 6, 3 and 7 SNPs were determined for height at withers, rump height, body length, chest depth, chest width, rump length, hip width, thurl width, pinbone width and heart girth, respectively. About 7-26% of the total phenotypic variation was explained by the set of SNPs for each trait. QTL for the conformation traits were harbored on most bovine chromosomes (BTAs). Four SNPs with pleiotropic effects on height at withers and rump height were detected on BTAs 3, 4, 6 and 16. A SNP with pleiotropic effects on chest width and rump length was also detected on BTA10. Two QTL regions, i.e. between 87 and 97 Mb in BTA3 and between 41 and 44 Mb in BTA7, were found, in which SNPs were detected for the five and three conformation traits, respectively. The detected SNPs need to be validated in other Hanwoo populations for commercial application to the genetic improvement of conformation characteristics in Hanwoo via marker-assisted selection (MAS).

Current status and prospects to identify mutations responsible for mutant phenotypes by using NGS technology (NGS 기술 활용 돌연변이체 해석 및 연구현황)

  • Jung, Yu Jin;Ryu, Ho Jin;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Next-generation sequencing allows the identification of mutations responsible for mutant phenotypes by whole-genome resequencing and alignment to a reference genome. However, when the resequenced cultivar/line displays significant structural variation from the reference genome, mutations in the genome regions absent in the reference cannot be identified by simple alignment. In this review, we report the current status and prospects in identification of genes in mutant phenotypes, by using the methods MutMap, MutMap-Gap, and MutMap+. These methods delineate a candidate region harboring a mutation of interest, followed by de novo assembly, alignment, and identification of the mutation within genome gaps. These methods are likely to prove useful for cloning genes that exhibit significant structural variations, such as disease resistance genes of the nucleotide-binding site-leucine rich repeat (NBS-LRR) class.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing

  • Shin, Younhee;Jung, Ho-jin;Jung, Myunghee;Yoo, Seungil;Subramaniyam, Sathiyamoorthy;Markkandan, Kesavan;Kang, Jun-Mo;Rai, Rajani;Park, Junhyung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1353-1362
    • /
    • 2016
  • Hanwoo, a Korean native cattle (Bos taurus coreana), has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs) in ten Hanwoo bulls. Analysis of whole-genome resequencing generated a total of 26.5 Gb data, of which 594,716,859 and 592,990,750 reads covered 98.73% and 93.79% of the bovine reference genomes of UMD 3.1 and Btau 4.6.1, respectively. In total, 2,473,884 and 2,402,997 putative SNPs were discovered, of which 1,095,922 (44.3%) and 982,674 (40.9%) novel SNPs were discovered against UMD3.1 and Btau 4.6.1, respectively. Among the SNPs, the 46,301 (UMD 3.1) and 28,613 SNPs (Btau 4.6.1) that were identified as Hanwoo-specific SNPs were included in the functional genes that may be involved in the mechanisms of milk production, tenderness, juiciness, marbling of Hanwoo beef and yellow hair. Most of the Hanwoo-specific SNPs were identified in the promoter region, suggesting that the SNPs influence differential expression of the regulated genes relative to the relevant traits. In particular, the non-synonymous (ns) SNPs found in CORIN, which is a negative regulator of Agouti, might be a causal variant to determine yellow hair of Hanwoo. Our results will provide abundant genetic sources of variation to characterize Hanwoo genetics and for subsequent breeding.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

Application of RAPD Methods in Meat for Beef Breed Identification

  • Choy, Y.H.;Oh, S.J.;Kang, J.O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1655-1658
    • /
    • 2001
  • Bovine genome samples were collected from meat of three different beef breeds (Hanwoo, Holstein and imported beef breed) that are commercially merchandized in Korean beef market. Operon B (OPB)-kits were used as random primers (3, 7, 10, 11, 12, 14) in random amplified polymorphic DNA (RAPD) method on whole genome. Each primer provided characteristic bands that were highly polymorphic. Each single primer could provide relatively efficient polymorphic band patterns among breeds. However, use of two or more primers in combination is recommended to improve resolution of experiments with higher molecular weight bands of DNA. In our experiments, OPB-11 resolved well between beef cattle breeds and Holstein. And OPB-7, 12 and 14 could be combined with OPB-11 to identify Hanwoo beef from the other two kinds of beef.

Exome and genome sequencing for diagnosing patients with suspected rare genetic disease

  • Go Hun Seo;Hane Lee
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Rare diseases, even though defined as fewer than 20,000 in South Korea, with over 8,000 rare Mendelian disorders having been identified, they collectively impact 6-8% of the global population. Many of the rare diseases pose significant challenges to patients, patients' families, and the healthcare system. The diagnostic journey for rare disease patients is often lengthy and arduous, hampered by the genetic diversity and phenotypic complexity of these conditions. With the advent of next-generation sequencing technology and clinical implementation of exome sequencing (ES) and genome sequencing (GS), the diagnostic rate for rare diseases is 25-50% depending on the disease category. It is also allowing more rapid new gene-disease association discovery and equipping us to practice precision medicine by offering tailored medical management plans, early intervention, family planning options. However, a substantial number of patients remain undiagnosed, and it could be due to several factors. Some may not have genetic disorders. Some may have disease-causing variants that are not detectable or interpretable by ES and GS. It's also possible that some patient might have a disease-causing variant in a gene that hasn't yet been linked to a disease. For patients who remain undiagnosed, reanalysis of existing data has shown promises in providing new molecular diagnoses achieved by new gene-disease associations, new variant discovery, and variant reclassification, leading to a 5-10% increase in the diagnostic rate. More advanced approach such as long-read sequencing, transcriptome sequencing and integration of multi-omics data may provide potential values in uncovering elusive genetic causes.