DOI QR코드

DOI QR Code

Exome and genome sequencing for diagnosing patients with suspected rare genetic disease

  • Go Hun Seo (Medical Genetics Division, 3billion, Inc.) ;
  • Hane Lee (Medical Genetics Division, 3billion, Inc.)
  • 투고 : 2023.11.15
  • 심사 : 2023.12.05
  • 발행 : 2023.12.31

초록

Rare diseases, even though defined as fewer than 20,000 in South Korea, with over 8,000 rare Mendelian disorders having been identified, they collectively impact 6-8% of the global population. Many of the rare diseases pose significant challenges to patients, patients' families, and the healthcare system. The diagnostic journey for rare disease patients is often lengthy and arduous, hampered by the genetic diversity and phenotypic complexity of these conditions. With the advent of next-generation sequencing technology and clinical implementation of exome sequencing (ES) and genome sequencing (GS), the diagnostic rate for rare diseases is 25-50% depending on the disease category. It is also allowing more rapid new gene-disease association discovery and equipping us to practice precision medicine by offering tailored medical management plans, early intervention, family planning options. However, a substantial number of patients remain undiagnosed, and it could be due to several factors. Some may not have genetic disorders. Some may have disease-causing variants that are not detectable or interpretable by ES and GS. It's also possible that some patient might have a disease-causing variant in a gene that hasn't yet been linked to a disease. For patients who remain undiagnosed, reanalysis of existing data has shown promises in providing new molecular diagnoses achieved by new gene-disease associations, new variant discovery, and variant reclassification, leading to a 5-10% increase in the diagnostic rate. More advanced approach such as long-read sequencing, transcriptome sequencing and integration of multi-omics data may provide potential values in uncovering elusive genetic causes.

키워드

참고문헌

  1. Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E, et al.; International Society for Pharmacoeconomics and Outcomes Research Rare Disease Special Interest Group. Rare disease terminology and definitions-a systematic global review: report of the ISPOR Rare Disease Special Interest Group. Value Health 2015;18:906-14. https://doi.org/10.1016/j.jval.2015.05.008
  2. Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165-73. https://doi.org/10.1038/s41431-019-0508-0
  3. National Health Insurance Service. The statistics of national health insurance: population with health insurance coverage. [https://nhiss.nhis.or.kr/bd/ad/bdada013cv.do]
  4. Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, et al. The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 2015;97:199-215. https://doi.org/10.1016/j.ajhg.2015.06.009
  5. Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 2019;47:D1038-43. https://doi.org/10.1093/nar/gky1151
  6. Yang G, Cintina I, Pariser A, Oehrlein E, Sullivan J, Kennedy A. The national economic burden of rare disease in the United States in 2019. Orphanet J Rare Dis 2022;17:163.
  7. Shashi V, McConkie-Rosell A, Rosell B, Schoch K, Vellore K, McDonald M, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 2014;16:176-82. Erratum in: Genet Med 2013;15:849.
  8. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014;312:1880-7. https://doi.org/10.1001/jama.2014.14604
  9. Shickh S, Mighton C, Uleryk E, Pechlivanoglou P, Bombard Y. The clinical utility of exome and genome sequencing across clinical indications: a systematic review. Hum Genet 2021;140:1403-16. https://doi.org/10.1007/s00439-021-02331-x
  10. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 2013;369:1502-11. https://doi.org/10.1056/NEJMoa1306555
  11. Seo GH, Kim T, Choi IH, Park JY, Lee J, Kim S, et al. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin Genet 2020;98:562-70. https://doi.org/10.1111/cge.13848
  12. Smedley D, Smith KR, Martin A, Thomas EA, McDonagh EM, Cipriani V, et al. 100,000 Genomes pilot on rare-disease diagnosis in health care - preliminary report. N Engl J Med 2021;385:1868-80. https://doi.org/10.1056/NEJMoa2035790
  13. Wright CF, Campbell P, Eberhardt RY, Aitken S, Perrett D, Brent S, et al.; DDD Study. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland. N Engl J Med 2023;388:1559-71.
  14. Shashi V, Petrovski S, Schoch K, Crimian R, Case LE, Khalid R, et al. Sustained therapeutic response to riboflavin in a child with a progressive neurological condition, diagnosed by whole-exome sequencing. Cold Spring Harb Mol Case Stud 2015;1:a000265.
  15. Iglesias A, Anyane-Yeboa K, Wynn J, Wilson A, Truitt Cho M, Guzman E, et al. The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 2014;16:922-31. https://doi.org/10.1038/gim.2014.58
  16. Splinter K, Adams DR, Bacino CA, Bellen HJ, Bernstein JA, Cheatle-Jarvela AM, et al.; Undiagnosed Diseases Network. Effect of genetic diagnosis on patients with previously undiagnosed disease. N Engl J Med 2018;379:2131-9. https://doi.org/10.1056/NEJMoa1714458
  17. Ferket BS, Baldwin Z, Murali P, Pai A, Mittendorf KF, Russell HV, et al. Cost-effectiveness frameworks for comparing genome and exome sequencing versus conventional diagnostic pathways: a scoping review and recommended methods. Genet Med 2022;24:2014-27. https://doi.org/10.1016/j.gim.2022.06.004
  18. Lavelle TA, Feng X, Keisler M, Cohen JT, Neumann PJ, Prichard D, et al. Cost-effectiveness of exome and genome sequencing for children with rare and undiagnosed conditions. Genet Med 2022;24:1349-61. https://doi.org/10.1016/j.gim.2022.03.005
  19. Manickam K, McClain MR, Demmer LA, Biswas S, Kearney HM, Malinowski J, et al.; ACMG Board of Directors. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021;23:2029-37. https://doi.org/10.1038/s41436-021-01242-6
  20. Moskowitz SM, Chmiel JF, Sternen DL, Cheng E, Gibson RL, Marshall SG, et al. Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genet Med 2008;10:851-68. https://doi.org/10.1097/GIM.0b013e31818e55a2
  21. Nallamilli BR, Ankala A, Hegde M. Molecular diagnosis of Duchenne muscular dystrophy. Curr Protoc Hum Genet 2014;83:9.25.1-29. https://doi.org/10.1002/0471142905.hg0925s83
  22. Driscoll DA, Gross S. Clinical practice. Prenatal screening for aneuploidy. N Engl J Med 2009;360:2556-62. https://doi.org/10.1056/NEJMcp0900134
  23. Vona B, Muller T, Nanda I, Neuner C, Hofrichter MA, Schroder J, et al. Targeted next-generation sequencing of deafness genes in hearing-impaired individuals uncovers informative mutations. Genet Med 2014;16:945-53. https://doi.org/10.1038/gim.2014.65
  24. Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, et al. Assessment of the diagnostic yield of combined cardiomyopathy and arrhythmia genetic testing. JAMA Cardiol 2022;7:966-74. https://doi.org/10.1001/jamacardio.2022.2455
  25. Quaio CRDC, Obando MJR, Perazzio SF, Dutra AP, Chung CH, Moreira CM, et al. Exome sequencing and targeted gene panels: a simulated comparison of diagnostic yield using data from 158 patients with rare diseases. Genet Mol Biol 2021;44:20210061.
  26. Hussain HMJ, Wang M, Huang A, Schmidt R, Qian X, Yang P, et al. Novel pathogenic mutations identified from whole-genome sequencing in unsolved cases of patients affected with inherited retinal diseases. Genes (Basel) 2023;14:447.
  27. Kim YG, Kwon H, Park JH, Nam SH, Ha C, Shin S, et al. Whole-genome sequencing in clinically diagnosed Charcot-Marie-Tooth disease undiagnosed by whole-exome sequencing. Brain Commun 2023;5:fcad139.
  28. Austin-Tse CA, Jobanputra V, Perry DL, Bick D, Taft RJ, Venner E, et al.; Medical Genome Initiative. Best practices for the interpretation and reporting of clinical whole genome sequencing. NPJ Genom Med 2022;7:27.
  29. Koboldt DC. Best practices for variant calling in clinical sequencing. Genome Med 2020;12:91.
  30. Pereira R, Oliveira J, Sousa M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med 2020;9:132.
  31. Seaby EG, Pengelly RJ, Ennis S. Exome sequencing explained: a practical guide to its clinical application. Brief Funct Genomics 2016;15:374-84. https://doi.org/10.1093/bfgp/elv054
  32. Guo Y, Dai Y, Yu H, Zhao S, Samuels DC, Shyr Y. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics 2017;109:83-90. https://doi.org/10.1016/j.ygeno.2017.01.005
  33. Ewing AD. Transposable element detection from whole genome sequence data. Mob DNA 2015;6:24.
  34. Royer-Bertrand B, Cisarova K, Niel-Butschi F, Mittaz-Crettol L, Fodstad H, Superti-Furga A. CNV detection from exome sequencing data in routine diagnostics of rare genetic disorders: opportunities and limitations. Genes (Basel) 2021;12:1427.
  35. Dharmadhikari AV, Ghosh R, Yuan B, Liu P, Dai H, Al Masri S, et al. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med 2019;11:30.
  36. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020;22:245-57. Erratum in: Genet Med 2021;23:2230.
  37. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24. https://doi.org/10.1038/gim.2015.30
  38. De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med 2021;13:153.
  39. Kim HH, Woo J, Kim DW, Lee J, Seo GH, Lee H, et al. Disease-causing variant recommendation system for clinical genome interpretation with adjusted scores for artefactual variants. bioRxiv 2022, in press.
  40. Owen MJ, Lefebvre S, Hansen C, Kunard CM, Dimmock DP, Smith LD, et al. An automated 13.5hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat Commun 2022;13:4057.
  41. Chung CCY, Hue SPY, Ng NYT, Doong PHL, Chu ATW, Chung BHY. Meta-analysis of the diagnostic and clinical utility of exome and genome sequencing in pediatric and adult patients with rare diseases across diverse populations. Genet Med 2023;25:100896.
  42. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 2018;20:435-43. https://doi.org/10.1038/gim.2017.119
  43. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 2011;29:908-14. https://doi.org/10.1038/nbt.1975
  44. Poole OV, Pizzamiglio C, Murphy D, Falabella M, Macken WL, Bugiardini E, et al. Mitochondrial DNA analysis from exome sequencing data improves diagnostic yield in neurological diseases. Ann Neurol 2021;89:1240-7. https://doi.org/10.1002/ana.26063
  45. Davis RL, Kumar KR, Puttick C, Liang C, Ahmad KE, Edema-Hildebrand F, et al. Use of whole-genome sequencing for mitochondrial disease diagnosis. Neurology 2022;99:e730-42. https://doi.org/10.1212/WNL.0000000000200745
  46. Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA, et al. Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am J Hum Genet 2015;97:67-74. https://doi.org/10.1016/j.ajhg.2015.05.008
  47. Lee H, Huang AY, Wang LK, Yoon AJ, Renteria G, Eskin A, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med 2020;22:490-9. https://doi.org/10.1038/s41436-019-0672-1
  48. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun 2017;8:15824.
  49. Fresard L, Smail C, Ferraro NM, Teran NA, Li X, Smith KS, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med 2019;25:911-9. https://doi.org/10.1038/s41591-019-0457-8
  50. Murdock DR, Dai H, Burrage LC, Rosenfeld JA, Ketkar S, Muller MF, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest 2021;131:e141500.
  51. Aicher JK, Jewell P, Vaquero-Garcia J, Barash Y, Bhoj EJ. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet Med 2020;22:1181-90. https://doi.org/10.1038/s41436-020-0780-y
  52. Seo GH, Lee H, Lee J, Han H, Cho YK, Kim M, et al. Diagnostic performance of automated, streamlined, daily updated exome analysis in patients with neurodevelopmental delay. Mol Med 2022;28:38.
  53. Mandelker D, Schmidt RJ, Ankala A, McDonald Gibson K, Bowser M, Sharma H, et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 2016;18:1282-9. https://doi.org/10.1038/gim.2016.58
  54. Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet 2021;108:1436-49. https://doi.org/10.1016/j.ajhg.2021.06.006
  55. Bertier G, Hetu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users' views. BMC Med Genomics 2016;9:52.
  56. Kwong A, Ho CYS, Shin VY, Au CH, Chan TL, Ma ESK. How does reclassification of variants of unknown significance (VUS) impact the management of patients at risk for hereditary breast cancer? BMC Med Genomics 2022;15:122.
  57. Liu Y, Wang H, Wang X, Liu J, Li J, Wang X, et al. Prevalence and reclassification of BRCA1 and BRCA2 variants in a large, unselected Chinese Han breast cancer cohort. J Hematol Oncol 2021;14:18.
  58. Horton C, Hoang L, Zimmermann H, Young C, Grzybowski J, Durda K, et al. Diagnostic outcomes of concurrent DNA and RNA sequencing in individuals undergoing hereditary cancer testing. JAMA Oncol 2023, in press.
  59. Costain G, Jobling R, Walker S, Reuter MS, Snell M, Bowdin S, et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. Eur J Hum Genet 2018;26:740-4. https://doi.org/10.1038/s41431-018-0114-6
  60. Liu P, Meng L, Normand EA, Xia F, Song X, Ghazi A, et al. Reanalysis of clinical exome sequencing data. N Engl J Med 2019;380:2478-80. https://doi.org/10.1056/NEJMc1812033
  61. Fung JLF, Yu MHC, Huang S, Chung CCY, Chan MCY, Pajusalu S, et al. A three-year follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med 2020;5:37.
  62. James KN, Clark MM, Camp B, Kint C, Schols P, Batalov S, et al. Partially automated whole-genome sequencing reanalysis of previously undiagnosed pediatric patients can efficiently yield new diagnoses. NPJ Genom Med 2020;5:33.
  63. Deignan JL, Chung WK, Kearney HM, Monaghan KG, Rehder CW, Chao EC; ACMG Laboratory Quality Assurance Committee. Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2019;21:1267-70. https://doi.org/10.1038/s41436-019-0478-1
  64. Ewans LJ, Schofield D, Shrestha R, Zhu Y, Gayevskiy V, Ying K, et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genet Med 2018;20:1564-74. https://doi.org/10.1038/gim.2018.39
  65. De Coster W, Weissensteiner MH, Sedlazeck FJ. Towards population-scale long-read sequencing. Nat Rev Genet 2021;22:572-87. https://doi.org/10.1038/s41576-021-00367-3
  66. Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med 2023;15:42.
  67. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 2017;14:407-10. https://doi.org/10.1038/nmeth.4184
  68. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell 2019;176:535-48.e24. https://doi.org/10.1016/j.cell.2018.12.015
  69. Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol 2022;23:103.
  70. Almeida LS, Pereira C, Aanicai R, Schroder S, Bochinski T, Kaune A, et al. An integrated multiomic approach as an excellent tool for the diagnosis of metabolic diseases: our first 3720 patients. Eur J Hum Genet 2022;30:1029-35. https://doi.org/10.1038/s41431-022-01119-5
  71. Stenton SL, Kremer LS, Kopajtich R, Ludwig C, Prokisch H. The diagnosis of inborn errors of metabolism by an integrative "multi-omics" approach: a perspective encompassing genomics, transcriptomics, and proteomics. J Inherit Metab Dis 2020;43:25-35. https://doi.org/10.1002/jimd.12130