DOI QR코드

DOI QR Code

Current status and prospects to identify mutations responsible for mutant phenotypes by using NGS technology

NGS 기술 활용 돌연변이체 해석 및 연구현황

  • Jung, Yu Jin (Department of Horticultural Life Science, Hankyong National University, Institute of Genetic Engineering, Hankyong National University) ;
  • Ryu, Ho Jin (Department of Biology, Chungbuk National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Kang, Kwon Kyoo (Department of Horticultural Life Science, Hankyong National University, Institute of Genetic Engineering, Hankyong National University)
  • 정유진 (국립한경대학교 원예생명과학과, 국립한경대학교 유전공학연구소) ;
  • 류호진 (충북대학교 자연과학대학 생물학과) ;
  • 조용구 (충북대학교 식물자원학과) ;
  • 강권규 (국립한경대학교 원예생명과학과, 국립한경대학교 유전공학연구소)
  • Received : 2016.11.02
  • Accepted : 2016.11.04
  • Published : 2016.12.31

Abstract

Next-generation sequencing allows the identification of mutations responsible for mutant phenotypes by whole-genome resequencing and alignment to a reference genome. However, when the resequenced cultivar/line displays significant structural variation from the reference genome, mutations in the genome regions absent in the reference cannot be identified by simple alignment. In this review, we report the current status and prospects in identification of genes in mutant phenotypes, by using the methods MutMap, MutMap-Gap, and MutMap+. These methods delineate a candidate region harboring a mutation of interest, followed by de novo assembly, alignment, and identification of the mutation within genome gaps. These methods are likely to prove useful for cloning genes that exhibit significant structural variations, such as disease resistance genes of the nucleotide-binding site-leucine rich repeat (NBS-LRR) class.

NGS 기술은 전체 게놈 시퀀싱 및 reference 게놈에 alignment에 의해 돌연변이 표현형에 관련된 돌연변이 식별에 이용한다. 그러나 품종 및 계통들을 resequence 하였을 경우 기존의 reference 게놈에 구조적 변이가 보이며, reference와 맞지 않는 게놈지역에서 돌연변이들은 단순한 alignment로 찾을 수 없다. 본 리뷰에서는 NGS 기술을 이용하여 돌연변이체로부터 변이 관련 유전자를 식별하는 MutMap, MutMap-Gap 및 MutMap+ 방법을 기술하였고 지금까지의 연구현황에 대해 기술하였다. 아울러 이들 방법은 nucleotide-binding site-leucine rich repeat (NBS-LRR) 그룹들의 병 저항성 유전자와 같이 구조적 변이를 가진 유전자를 분리하는 등 유용성에 대해 고찰하였다.

Keywords

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, oshida K, Mitsuoka C, Tamiru M et al. (2012) Genome sequencing reveals gronomically important loci in rice using MutMap. Nature Biotechnology 30:174-178 https://doi.org/10.1038/nbt.2095
  2. Altshule D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322 (5903):881-888 https://doi.org/10.1126/science.1156409
  3. Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, Zhang J, Fung P, Gong Y, Wang PW et al. (2011) Next-generation mapping of Arabidopsis genes. Plant Journal 67:715-725 https://doi.org/10.1111/j.1365-313X.2011.04619.x
  4. Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 6: e19315 https://doi.org/10.1371/journal.pone.0019315
  5. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578-579 https://doi.org/10.1093/bioinformatics/btq683
  6. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA et al. (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338-342 https://doi.org/10.1126/science.1138632
  7. Elshir RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: e19379 https://doi.org/10.1371/journal.pone.0019379
  8. Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H et al. (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529 https://doi.org/10.1371/journal.pone.0068529
  9. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnol. 30:798-802 https://doi.org/10.1038/nbt.2302
  10. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genet. 42:961-967 https://doi.org/10.1038/ng.695
  11. Hunter KW, Crawford NPS (2008) The future of mouse QTL mapping to diagnose disease in mice in the age of whole-genome association studies. Annu. Rev. Genet 42:131-141 https://doi.org/10.1146/annurev.genet.42.110807.091659
  12. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760 https://doi.org/10.1093/bioinformatics/btp324
  13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and samtools. Bioinformatics 25:2078-2079 https://doi.org/10.1093/bioinformatics/btp352
  14. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr. Opin. Plant Biol. 12:107-118 https://doi.org/10.1016/j.pbi.2008.11.004
  15. Morishige DT, Klein PE, Hilley JL, Sahraeian SME, Sharma A, Mullet JE (2013) Digital genotyping of sorghum-a diverse plant species with a large repeat-rich genome. BMC Genomics 14:448 https://doi.org/10.1186/1471-2164-14-448
  16. Lupski JR, Reid JG, Gonzaga-Jauregui C, Deiros DR, Chen DCY, Nazareth L, Bainbridge M, Dinh H, Jing C, Wheeler DA, Mcguire AL, Zhang F, Stankiewicz P, Halperin JJ, Yang C, Gehman C, Guo D, Irikat RK, Tom W, Fantin NJ, Muzny DM, Gibbs RA (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N. Engl. J. Med. 362:1181-1191 https://doi.org/10.1056/NEJMoa0908094
  17. Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H et al. (2013a) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 200:276-283 https://doi.org/10.1111/nph.12369
  18. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S et al. (2013b) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74:174-183 https://doi.org/10.1111/tpj.12105
  19. Takagi H et al. (2015) MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 33:445-449 https://doi.org/10.1038/nbt.3188
  20. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint- Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genet. 43:6-11
  21. Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30-38 https://doi.org/10.1038/hdy.2013.6
  22. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic Characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. Plos One 4(12):e8451 https://doi.org/10.1371/journal.pone.0008451
  23. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics 271:402-405 https://doi.org/10.1007/s00438-004-0990-z
  24. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5-20 https://doi.org/10.3835/plantgenome2008.02.0089