• 제목/요약/키워드: Wheel-track hybrid

검색결과 8건 처리시간 0.022초

휠-트랙 하이브리드 모바일 플랫폼을 위한 지형 적응성 장애물 극복 자세 제어기 개발 (Development of Terrain-Adaptive Attitude Controller for Hybrid Mobile Platform with Wheel & Track)

  • 곽정환;김윤구;홍대한;안진웅
    • 대한임베디드공학회논문지
    • /
    • 제7권2호
    • /
    • pp.61-70
    • /
    • 2012
  • This paper describes terrain-adaptive attitude controller for a hybrid mobile platform which operates in wheel & track mode. The wheel mode of the hybrid mobile platform allows quick driving performance in the flatland, while the track mode provides adaptive movement in the rough ground or stairway. The switching of the platform between two modes is automatically controlled by attitude controller algorithm. In addition, in the track mode, the platform automatically adjusts its attitude angle to overcome the obstacles in front. This paper demonstrates the attitude controller for the aforementioned wheel-track hybrid mobile platform in order to overcome terrain obstacles by using an adaptive method. The driving performance of the hybrid mobile platform has been tested and verified in various surrounding environments in both wheel and track mode. Further, this paper presents the experiments by using the track structure of mobile platform on forming adaptive attitude under various types of obstacles. The practicability and effectiveness of the proposed attitude controller of the platform has been demonstrated in urban building and a test-bed.

복합 바퀴-궤도 메커니즘 기반의 소형 로봇 (A Small Robot Based on Hybrid Wheel-Track Mechanism)

  • 이장운;김병상;송재복
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.545-551
    • /
    • 2009
  • A small guard robot working indoors or outdoors can be used to report various information on its environment to an operator. The guard robot should be small-sized and lightweight to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with various situations. To satisfy these requirements, this paper presents a small robot equipped with a novel hybrid wheel and track mechanism that can select wheels or tracks depending on the situation. The robot folds the tracks into the body in the wheel mode and only wheels are active with the tracks immobilized, which results in the fast moving speed. In the track mode, the tracks are extended to keep in contact with the ground. Furthermore, this research proposes the belt length maintenance mechanism by which the belt length is kept constant in either the wheel or track mode. Various experiments demonstrate that the proposed robot can move fast by using wheels on the smooth terrain and overcome obstacles by using tracks on the rough terrain.

휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발 (Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform)

  • 김윤구;안진웅;곽정환;문전일
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

도심지형 최적주행을 위한 휠.무한궤도 하이브리드형 모바일 로봇 플랫폼 및 메커니즘 (Wheel &Track Hybrid Mobile Robot Platform and Mechanism for Optimal Navigation in Urban Terrain)

  • 김윤구;김진욱;곽정환;홍대한;이기동;안진웅
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.270-277
    • /
    • 2010
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for the purpose of surveillance, reconnaissance, search and rescue, and etc. We have considered a terrain adaptive hybrid robot platform which is equipped with rapid navigation on flat floors and good performance on overcoming stairs or obstacles. Since our special consideration is posed to its flexibility for real application, we devised a design of a transformable robot structure which consists of an ordinary wheeled structure to navigate fast on flat floor and a variable tracked structure to climb stairs effectively. Especially, track arms installed in front side, rear side, and mid side are used for navigation mode transition between flatland navigation and stairs climbing. The mode transition is determined and implemented by adaptive driving mode control of mobile robot. The wheel and track hybrid mobile platform apparatus applied off-road driving mechanism for various professional service robots is verified through experiments for navigation performance in real and test-bed environment.

하이브리드 궤도회로 태그 인식율 향상에 관한 연구 (A Study on Hybrid Track Circuit Tag Recognition Enhancement)

  • 양동인;이창룡;김철환;이기서;고윤석
    • 한국전자통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.537-542
    • /
    • 2014
  • 철도신호시스템에서 열차위치 검지기능은 선로의 레일을 전기회로의 일부분으로 사용하여 차륜에 의해 단락되어 열차의 유무를 검지하는 궤도회로, RFID와 차륜센서, GPS 등과 같은 여러 가지 방식으로 구현 연구가 되고 있다. 하이브리드 궤도회로는 안테나와 리더기를 차량에 설치하고, 태그를 침목위에 설치하여, 안테나에서 태그에 저장된 절대위치정보를 제어장치에 전송하여 열차위치를 인식하는 RFID 방식의 궤도회로이다. 열차위치검지기능에서 태그의 인식율은 열차운행의 안전에 직접적인 영향을 주게 되므로 고신뢰도를 요구한다. 본 논문에서는 방향각을 갖는 태그를 이용한 태그인식율의 향상에 관한 연구를 하였다.