• 제목/요약/키워드: Wheel-rail Contact

검색결과 224건 처리시간 0.029초

차륜/레일 기하학적 인자의 등가답면구배에 미치는 영향 (A study on the influence of wheel/rail geometric parameters to equivalent conicity)

  • 허현무;권성태;김형진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.430-434
    • /
    • 2004
  • The geometric parameters between wheel and rail change wheel/rail contact geometry characteristics, and this influence dynamic behavior of rolling stock. So, the selections of optimum geometric parameters between wheel and rail is important for planning of railway system. In this study, we have analyzed the influence of geometric parameters like wheel flange-back distance, gage, and rail inclination to the equivalent conicity relating dynamic behavior. The analyses show the following results. The widening of wheel flange-back distance increase the equivalent conicity, the widening of gage, rail inclination 1/20 compared with rail inclination 1/40 decrease the equivalent conicity.

  • PDF

A Proposal of Wheel/Rail Contact Model for Friction Control

  • Matsumoto Kosuke;Suda Yoshihiro;Komine Hisanao;Nakai Takuji;Tomeoka Masao;Shimizu Kunihito;Tanimoto Masuhisa;Kishimoto Yasushi;Fujii Takashi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.437-443
    • /
    • 2005
  • Controlling the friction between wheel and rail is direct and very effective measures to improve the curving performances of railway trucks, because the curving performances depend much on friction characteristics. Authors have proposed a method, 'friction control', which utilizes friction modifier ($KELTRACK^{TM}$ HPF) with onboard spraying system. With the method, not only friction coefficient, but also friction characteristics can be controlled as expected. In this study, MBD simulation is very valuable tool to foresee the effect of the control in advance of experiment with real car. And the creep characteristics of wheel/rail contact with the friction modifier takes very important role in the simulation. In this paper, authors propose a theoretical model of wheel/rail contact condition considering the creep characteristics of friction modifier, which is derived the application of principle tribological theories.

White etching layer의 두께변화에 따른 접촉피로수명 평가 (Contact Fatigue Analysis of White Etching Layer according to Thickness Variation)

  • 서정원;권석진;전현규;이동형
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.35-41
    • /
    • 2010
  • White Etching Layer(WEL) is a phenomenon that occurs on the surface of rail due to wheel/rail interactions such as excessive braking and acceleration. Rolling Contact Fatigue(RCF) cracks on the surface of rail have been found to be associated with WEL. In this study, we have investigated RCF damages of white etching layer using twin disc testing and fatigue analysis. These tests consist of wheel flat tests and rolling contact fatigue tests. WEL has been simulated by wheel flat test. It has been founded that the WEL with a bright featureless contrast is formed on the surface of specimen by etching. Rolling contact fatigue test was conducted by using flat specimens with the WEL generated by the wheel flat test. It has been observed that two types of cracks occur within the specimen. The contact fatigue test was simulated in 2D elastic-plastic FE simulations. Based on loading cycles obtained from the finite element analysis, the fatigue life analysis according to the thickness variation of WEL was carried out. The longest fatigue life was observed from the thickness of 20um.

철도차량 차륜/레일 접촉모듈 개발 (Development of a Wheel/Rail Contact Module for Railway Vehicles)

  • 한형석;허신;하성도
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.358-364
    • /
    • 1999
  • A wheel/rail contact module for dynamics analysis of railway vehicles is developed. The developed module is based on non-linear contact and FASTSIM algorithm which calculates contact forces. And the module is incorporated into the general purpose program DADS using user-defined subroutines. The simulation results of this developed program is compared to those of the railway vehicle dynamics analysis program AGEM. Since the module is based on DADS, various simulation environments can be considered.

  • PDF

전자기센서를 이용한 고속철도용 차륜재의 구름접촉피로 손상 모니터링 (Damage Monitoring of Rolling Contact Fatigue in Wheel Specimen for High Speed Train Using Electro-Magnetic Sensor)

  • 권석진;황지성;서정원;이진이
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.600-606
    • /
    • 2012
  • Upon investigation of the damaged wheels for high speed train it was determined that the damage was caused by rolling contact fatigue during operation of train. The major problems that railway vehicle system using wheel-rail has to face during operation of railway vehicle are rolling contact fatigue, cracks in wheels, cracks in rails and wheel-rail profile wear. If these deficiencies are not controlled at early stages the huge economical problems due to unexpected maintenance cost in railway vehicle can be happened. Also, If the accurate knowledge of contact conditions between wheel and rail can be evaluated, the damage of wheel can be prevented and the maintenance operation can save money. This paper presents the applicability of electro-magnetic technique to the detection and sizing of defects in wheel. Under the condition of continuous rolling contact fatigue the damage of wheel has continuously monitored using the applied sensor. It was shown that the usefulness of the applied sensor was verified by twin disc test and the measured damaged sizes showed good agreement with the damaged sizes estimated by electro-magnetic technique.

Worn Wheel/Rail Contact Simulation and Cultivated Shear Stresses

  • Noori, Ziaedin;Shahravi, Majid;Rezvani, Mohammad Ali
    • 한국철도학회논문집
    • /
    • 제16권2호
    • /
    • pp.93-98
    • /
    • 2013
  • Railway system is today the most efficient way for transportation in many cases in several forms of application. Yet, wear phenomenon, profile evolution, fatigue, fracture, derailment are the major worries (financial and safety) in this system which force significant direct and indirect maintenance costs. To improve the cyclic maintenance procedures and the safety issues, it can be very satisfactory to be informed of the state of wheel/rail interaction with mileage. In present paper, an investigation of the behavior of the shear stresses by logged distance is approached, by implementing the field measurement procedure, in order to determine the real conduct of the most important cause of defects in wheel/rail contact, shear stress. The results coming from a simulation procedure indicate that the amounts of shear stresses are still in high-magnitudes when the wheel and rail are completely worn; even though in simulation based on the laboratory measurements of profile evolutions, the stresses become significantly reduced by logged distance.

휠/레일간의 접촉력 계산을 위한 접촉점 해석 알고리즘 (Contact point analysis for wheel/rail contact force calculation)

  • 박정훈;임진수;황요하;김창호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.429-436
    • /
    • 1998
  • In this paper, we derive the algorithm for calculating contact point between wheel and rail and develop the method for track modeling. The proposed methods use travelling distance to represent track center line poistion vector and track orientation with respect to Newtonian reference frame. The proposed methods can be easily used in multibody dynamic analysis. Two numerical examples are given to verify the validity of the proposed methods.

  • PDF

경사선로에서의 차륜과 레일간 상호작용에 따른 마모 현상 연구 (The research on wear simulation between wheel and rail at inclined of Korea High Speed Railway)

  • 문태선;서보필;최정흠;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.112-117
    • /
    • 2003
  • The purpose of this work is to general approach to numerically simulating wear in rolling and sliding contact area between wheel and rail interface based on the analysis of dynamics with general MBS package. A simulation scheme is developed that calculates the wear at a detailed level. The estimation of material removal follows Archard's wear equation which states that the reduction of volume is linearly proportional to the sliding distance, the normal applied load and the wear coefficient and inverse proportional to hardness. The main research application is the wheel-rail contact of Korea High Speed Railway.

  • PDF