• Title/Summary/Keyword: Wheel-axle

Search Result 145, Processing Time 0.028 seconds

Study on Design of Railway Hollow Axle (철도차량용 중공차축 설계에 관한 연구)

  • Son, Seungwan;Jung, Hyunsung;Choi, Sungkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.46-54
    • /
    • 2014
  • The hollow design of a railway axle is one of the most effective methods to reduce the weight of an axle. However, the conventional hollow axle has the limitation of a lightweight design because it has the same bore diameter along the axial position. The new type of railway axle, the tapered inner surface railway axle, has a different inner diameter between the journal bearing seat and wheel seat. This design method is one way to increase the weight reduction possibility. The purpose of the present study is to establish and evaluate the design of the tapered inner surface railway axle. The case study and Finite Element Method(FEM) are applied to evaluate the strength of the lightweight railway axle according to the European Norm(EN 13103). Finally, the best design case for reducing the weight of the axle is drawn from the results of the case study.

Slip/Slide Detection Method for the Railway Vehicles using Rotary Type Speed Sensor (회전형 속도검출기를 사용한 철도차량에서 공전, 활주의 검출방법)

  • Lee, Eul-Jae;Kim, Young-Seok;Yoon, Yong-Ki;Lee, Jae-Ho;Ryu, Sang-Hwan;Jeong, Rak-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.405-407
    • /
    • 2000
  • The most generally implemented method to detect the ground speed of the railway vehicles is to use the rotary type speed sensor attached to wheel axle. The Slip or sliding phenomenon on the railway vehicles occurs frequently caused by the weak viscosity of the wheel. Thus, precisely to control the car, the slip/sliding detection system is required. In this paper we proposed for the speed data management system, which uses rotary type speed sensor. Proposed speed management system can detect the slip/sliding with wheel axle as well as correct the generated speed error during in error time, to provide accurate speed and precise location data. The effectiveness for adapting to the railway system is clarified by the computer simulation.

  • PDF

A Study of Development of All Wheel Steering ECU in Bi-modal Tram (저상굴절버스의 전 차륜 조향 시스템 ECU 개발에 대한 연구)

  • Kim, Ki-Jeong;Lee, Soo-Ho;Chung, Ki-Hyun;Choi, Kyung-Hee;Park, Tae-Won;Moon, Kyeong-Ho
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.19-26
    • /
    • 2010
  • As standard of living is higher and aging society is coming, it is needed to develop transportation that is easy to use for weak person. To comply with the demands, it is started to make Bi-modal Tram that is on KRRI(Korea Railroad Research Institute)'s hands. This tram has to have good accessibility like bus, be low level from ground like subway, and park accurately so wheel chair's or passenger's foot can't fall into the gap. But Bi-modal Tram have long length, so it need development of All Wheel Steering System. The Bi-modal Tram that have all wheel steering system steer not only the first axle but also the second and third axle from the first axle or articulation angle, and velocity, and so on. At this study, we discuss AWS ECU's development process.

A Study on the Axle Load Limits of Asphalt Concrete Pavements (아스팔트 콘크리트 포장구조체의 제한교통하중에 관한 연구)

  • Kim, Soo Il;Choi, Jun Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.67-76
    • /
    • 1992
  • A procedure to determine the axle load limits of asphalt concrete pavements are proposed in this study. Axle load limits are determined by calculating maximum tensile strains at the bottom of the asphalt stabilized base layer and maximum vertical strains at the top of the subgrade. In order to investigate the efficiency of axle configuration, calculated influence line of wheel load on domestic expressway pavement system is used. Limiting strains are selected through the analysis of conventional failure criteria. From the analysis of axle load limits about axle composition(single-axle, tandem-axle, tridem-axle), it is found that the axle load limits of tandem-axle and tridem-axle can be calculated by muitipling the axle load limits of single-axle by axle numbers and that axle load limits are closely related to the thickness of each layer of pavement structure. It is also found that the axle load limits by tensile strains are more critical than those by vertical strains on asphalt concrete pavement models of YOUNG-DONG, KYONG-IN and KYONG-BU expressways.

  • PDF

Dynamic Analysis of Railway Vehicle Having Single Axle Bogie (1축 대차용 철도차량의 동특성 해석)

  • Yang, Hee-Joo;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.84-89
    • /
    • 2001
  • Studied in this paper was the vehicle dynamics simulation for development of single axle bogie using the multi-body dynamics simulation program(VAMPIRE). Single axle bogie vehicle is to the crew of freight vehicle. Method of analysis for dynamic behaviors of vehicle having single axle bogie was carried by UIC(International Union of Railways) code 518 and results of analysis were presented in terms of the hunting stability and the derailment ratio and the sum of wheel/rail lateral force. The results of analysis meet the criteria proposed by UIC.

  • PDF

A Study on the Turning Performance for the Bimodal Tram (바이모달 트램 선회성능에 관한 연구)

  • Moon, Kyeong-Ho;Lee, Kang-Won;Mok, Jai-Kyun;Chang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.301-306
    • /
    • 2011
  • The rear of the vehicle generally overhangs the rear axle. As a result, the rear of a vehicle swings to the outside of the rear axle(rear swing-out). In front steering vehicles, rear swing-out is not important because rear swing-out values measured outside the rear edge are relatively small. However, in the case of the bimodal tram with AWS(all wheel steering), the rear swing-out values increase because of the rear steering at a reverse phase angle. Off-tracking is defined as the radial offset between the path of the centerline of the front axle and the path of the centerline of the following axle. In this paper, in addition to determine the turning performance of bimodal tram with AWS, turning radius, swing-out, off-tracking and swept path width were also investigated.

  • PDF

Finite Element Analysis of ICFPD Method for the Defect Detection of Railway Axle (철도차량 차축 결함에 대한 집중 유도 전위차법 탐상의 유한요소 해석)

  • Kim, Seong-Hun;Im, Chung-Hwan;Gu, Byeong-Chun;Gwon, Seok-Jin;Lee, Chan-U
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.397-402
    • /
    • 2005
  • The NDT(Non-Destructive Testing) is valid for the defect detection of rolling stocks because it can be used to detect the defect in many invisible parts. For example, fatigue cracks are initiated in press fit parts that suffer from fretting fatigue damage such as the wheel seat and the NDT technique can detect those cracks. But the conventional ICFPD method can not apply to detect such cracks in press fit parts of the axle by some technical problems. In this study, we have introduced the new concept ICFPD method that can be applied in press fit parts of the axle. And we have shown the basic techniques of FEM about the new concept ICFPD method.

  • PDF

A study on torsional strength of induction hardened axle shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF

Evaluation of Residual Stress of railway wheel (차륜/래일 접촉에 의한 차륜의 잔류응력 평가)

  • Seo Jung-Won;Goo Byeung-Choon;Chung Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.668-673
    • /
    • 2003
  • A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Damages of railway wheel are a spalling by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact. Distributions of residual stress vary according to a magnitude of wheel load, a magnitude of friction when acceleration and deceleration. The objective of this paper is to estimate the influence of wheel motion on the residual stress distribution in the vicinity of the running surface.

  • PDF

Evaluation of Residual Stress of railway wheel by rolling contact (차륜/레일 접촉에 의한 차륜의 잔류응력 평가)

  • Seo, Jung-Won;Goo, Byenug-Choon;Chung, Heung-Chai
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.142-148
    • /
    • 2003
  • A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact. Distributions of residual stress vary according to a magnitude of wheel load, a magnitude of friction when acceleration and deceleration. The objective of this paper is to estimate the influence of wheel motion on the residual stress distribution in the vicinity of the running surface.