• Title/Summary/Keyword: Wheel life

Search Result 200, Processing Time 0.024 seconds

Development of a Labyrinth Seal for a Momentum Wheel (모멘텀 휠용 라비린스실 개발)

  • Cheon, Dong-Ik;Oh, Hwa-Suk;Lee, Sangchul;Byun, Sang-Kyun;Park, Jong-Seung;Kang, Min-Young;Rhee, Seung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.37-41
    • /
    • 2007
  • Labyrinth seal is most common way to protect the bearings installed in Reaction wheel. In spite of wide applications, no such research was found about the sealing utility of the Labyrinth seal in the condition of vacuum and high temperature. In this research, we tried to verify the utility of Labyrinth seal. Numerical analysis had been executed to predict the benefit of the Labyrinth seal and also experiments were performed to verify the utilization. Two Bearings were installed at the vacuum chamber, one was assembled with Labyrinth seal and the other was stand alone. After executing the vacuum test, it was found to be the stand alone bearing had lost more weight than the one that was assembled with the labyrinth seal. In this result, it is verified that the Labyrinth seal has useful function to preserve the lubricant that affects to the life-cycle of the Bearing.

  • PDF

Evaluation of the Permanent Deformation Behavior on Geosynthetics-Reinforced Asphalt Pavement by using the Wheel Tracking Tests (휠트래킹 시험을 통한 토목섬유시트 보강 아스팔트포장의 소성변형 거동특성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young;Kim, Jin-Hwan;Kim, Nam-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.39-46
    • /
    • 2003
  • The major pavement distress types found in the domestic roadways include rutting, fatigue cracking, and reflection cracking which are results of the environment and repeated traffic loads. These distresses usually occur before pavements approach their design life, and therefore, a significant amount of national budget is spent for maintenance of roadway pavements. The purpose of this study is to establish a geosynthetics-asphalt pavement system. For the study, wheel tracking tests are conducted to analyze the controlling effect of geosynthetics on rutting of asphalt pavement. On the basis of these works, the reinforcement effect of geosynthetics on the rutting of the asphalt pavement is clarified and deformation characteristics of geosynthetics-asphalt mixture is examined.

  • PDF

A Study on Characteristics of Lateral Wheel Path Distributions in Different Traffic Lanes (차로위치에 따른 차량의 횡방향 이격거리 분포 특성에 관한 연구)

  • Jo, Myounghwan;Park, Hyunsik;Jin, Jung Hoon;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.339-346
    • /
    • 2008
  • The research was conducted to investigate the characteristics of lateral wheel path distributions (wandering) in different traffic lanes. The lateral wheel path distributions may affect pavement life and various distress types. The results presented that the normal distribution curve with symmetry was observed in the 2-lane and 3-lane roads. In the case of the 2-lane road (on one direction), the wanderings were 70-95cm, and 70-85cm for the 1st and 2nd lanes, respectively, while in the case of the 3-lane road (on one direction), 50-60cm, 65-85cm, and 80-95cm for the 1st, 2nd, and 3rd lanes, respectively. In addition, the 1st lane vehicles tended to pass on the right side to avoid the opposite side vehicles, while the outside lane vehicles tended to pass on the left side to avoid the walkway.

Fatigue Durability Analysis due to the Classes of Automotive Wheels (자동차 휠의 종류별 피로 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • This study analyzes structural stress and fatigue about three types of automotive wheels. As maximum equivalent stresses at 1, 2 and 3 types become lower than the yield stress of material and deformations become minute, theses types are thought be safe on durability. Type 2 model has the most fatigue life among three kinds of types and the rest of models with fatigue lives are shown in the order of type 1 and 3. As the most fatigue frequency of type 2 model happens at the state of average stress and amplitude stress on the stress range narrower than type 1 or 3, type 2 model becomes most stable. In case of type 2 with the state near the average stress of 0 MPa and the amplitude stress of 300MPa, the possibility of maximum damage becomes 30%. This stress state can be shown as the most damage possibility. These study results can be effectively utilized with the design on automotive wheel by anticipating and investigating prevention and durability against its damage.

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests (위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성)

  • Kim, Cheol;Lee, Seung-Yoon;Lee, Yong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.

Fabrication and Evaluation of Machinability of Diamond Particle Electroplating Tool for Cover-Glass Edge Machining (커버 글래스 엣지 가공을 위한 다이아몬드 입자 전착 공구 제작 및 가공성 평가)

  • Kim, Byung-Chan;Yoon, Ho-Sub;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In these days, due to generalization of using smart mobile phone and wearable device such as smart watch, demand of Cover-glass and touch screen panel for protecting display increases. With increasing the demand of Cover-glass, slimming technique is promising for weight lightening, zero bezel. Cover-glass produced by this technique is required to decreasing thickness with increase strength. In the Cover-glass manufacturing process, mechanical processing and chemical processing has improve in the strength. Generally, Diamond electrodeposition wheel is used in mechanical process. Reinforced glass with the characteristics of the brittle and high hardness was manufactured by using a diamond electrodeposition wheel. At this time, Because of surface of the tool present non-uniform distribution of diamond particle, it has generate Loading of wheel and it has been decrease life of grinding tool, efficiency of grinding, quality and shape accuracy of workpiece. Thus Research is needed to controling particle distribution of diamond electrodeposition wheel uniformly. And it is necessary to study micro hole machining such as proximity senser hole, speaker hole positioned Cover-glass. Reinforced glass with the characteristics of the brittle and high hardness is difficult to machining. Processing of reinforced glass have generated wear of tool, micro cracks. Also, it is decreasing shape accuracy. In this paper, We conducted a study on how to control particle distribution uniformly about the diamond tool manufactured using elecetodeposition processing. It analyzed the factors that affect the arrangement of the particles in the electrodeposition process by design of experiment. And There is produced the grinding tool, which derives an optimum deposition conditions, for processing Cover-glass edge and the machinability was evaluated.

Influence of Four Types of Steering Assistive Devices on Driving Performance: Comparison of Normal and Disabled People with and without Driver's License (4가지 선회보조 장치가 운전 성능에 미치는 영향: 장애 유무와 운전면허 유무에 따른 비교)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of Healthy and disabled groups (with or without driver's license) to control steering wheel by using steering assistive devices in the driving simulator. The persons with partial loss of use of all four limbs have problems in operation of the motor vehicle because of functional loss to operate steering wheel. Therefore, if steering assistive devices for grasping the steering wheel are used to control the vehicle on the road in persons with disabilities, the disabled persons can improve mobility in their community life by driving a motor vehicle safely. Ten healthy subjects (with or w/o driver's license) and ten subjects with physical disabilities (with or w/o driver's license) were involved in this study to evaluate driving performance to operate steering wheel by using four types of steering assistive devices (Single-pin, V-grip, Palm-grip, Tri-pin) in driving simulator. STISim Drive 3 software was used to test the steering performance in four scenarios: straight road at low and high speed of vehicle (40 km/h and 80 km/h), curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA in order to compare the effects of two factors (type of steering assistive device and subject group) in the three dependent variables of driving performance (the lateral position of vehicle, standard deviation of lateral position representing the variation of the left and right movement of the vehicle and the number of line crossing). The mean values of the three dependent variables (lateral position, standard deviation of lateral position, the number of line crossing) of steering performance were statistically significantly smaller for the healthy or disabled groups with driver's license than the other groups without driver's license on the curved road at high speed of vehicle compared to low speed of vehicle.

A study on the parameters to ensure safety against derailment (탈선 안전성능 향상을 위한 매개변수에 관한 연구)

  • Hwang, Jeong-Taek;Lee, Hi-Sung;Mok, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.297-303
    • /
    • 2007
  • Derailment is likely to have a direct connection with human life and must be eliminated. A traveling safety evaluation method based mainly on derailment coefficient has already established. But this method is very difficult because Derailment is caused by multiple factors. To evaluate the derailment factor of running train that runs on the curved track, we make use of mechanism that wheel loads and lateral forces were affected by track and rolling stock parameter. In this paper, deal with a search on the parameter and derailment factor. According to results of computer simulation value of Q/P, running safety is connected with operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio, SMRT train Line No. 5 Bogie is selected to do numerical study considering rolling stock and track condition.

  • PDF

Failure Studies on the Wear Scars of an Automotive Tire (차량용 타이어의 마멸손상에 관한 고장사례 연구)

  • Lee, II-Kwon;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.228-233
    • /
    • 2007
  • This paper presents the case studies on the friction related wears of an automotive tire, which is strongly connected to the safety and comfort of a driver during a running of a car. Wear scars of a tire tread are affected by various causes such as an air pressure, a wheel alignment, a driving speed, road conditions, starting and braking habits of a driver. The data were collected from used tires for a replacement at the car service center. Most of the wear problems came from the improper repair and adjustment of revolving components, which cause an unbalanced wear of a tread part of a tire. Thus, the regular checking of a tire radically reduces the wear scars of a tire and may increase a driving safety and a fuel economy of a car and a wear life of a tire.