• Title/Summary/Keyword: Wheel assembly

Search Result 85, Processing Time 0.027 seconds

An Experimental Study on Micro-vibration Measurement Methods of a Reaction Wheel (반작용휠의 미소진동 측정법에 관한 실험적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.828-833
    • /
    • 2011
  • A reaction wheel assembly(RWA) is the largest disturbance source that can induce high frequency micro-vibration on an optical payload of satellites. To ensure a tight pointing-stability budget of satellites, the RWA disturbance effect on spacecraft should be accurately analyzed and evaluated for whole design phases. For this purpose, the micro-vibration disturbance of RWA should be precisely measured. In the present study, two measurement methods on RWA micro-vibration disturbances are compared and investigated. One is a free run-down speed test and the other is a constant speed test. The micro-vibration data measured by the two methods are analyzed in terms of spectrum characteristics, static and dynamic imbalance values, and root sum square(RSS) values. The analysis results show that both methods can measure very similar results in time and frequency domains and that the free run-down speed method is more adequate in respects to wheel friction modeling, noise rejection of imbalance and RSS peak evaluation.

Optimal positioning of reaction wheel assemblies of optical observation satellite for minimizing image quality degradation (광학관측위성의 영상품질열화 최소화를 위한 반작용휠 최적위치 선정)

  • Im, Jeong Heum;Lim, Jae Hyuk;Kim, Kyung-Won;Yoon, Hyung-Joo;Kim, Sung-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2018
  • This paper describes how to find out the optimum position of the reaction wheel assembly (RWA) to minimize image quality degradation through the integrated system jitter prediction combining the micro-vibration test with finite element analysis considering optical coefficients. Micro-vibration generated from RWA that is widely used for satellite maneuver, is one of key factors that degrades the quality of satellite image. Due to varying vibration characteristics of each RWA, its accommodation position may affect image quality even though the same company manufactured them. To resolve this issue, an integrated system jitter prediction is conducted with all possible RWA accommodation location, and finally we determine optimal RWA position from the analysis results.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.802-808
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.84-89
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.

  • PDF

Analysis of Dynamic Behavior for Design Review of the Korean High Speed Prototype Test Train (한국형 고속전철 시제차량 설계검증을 위한 동특성 해석)

  • ;;Johannes Picht
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1232-1240
    • /
    • 2001
  • In this study. a computer simulation of the Korean High Speed Prototype Test Train was performed to investigate the dynamic behavior(running stability. safety and comfort) in detail design process. The simulation model which was prepared by ADAMS/Rail V10.l consists of power car and middle car assembly (2 motorized cars + 3 trailer cars). The nonlinear analysis takes into account the full vehicle model including wheel/rail contact and the influence of disturbed track. Throughout the dynamic calculation of KHST on the straight and the curved track. accelerations in car body. ride comforts and wheel rail forces were investigated.

  • PDF

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

RWA Disturbance Effects on the LOS stability (반작용 휠 외란의 시야선 안정성 영향)

  • Lee, Sang-Wook;Kim, Dong-Hoon;Cheon, Dong-Ik;Oh, Hwa-Suk;Kim, Eung-Hyun;Kim, Gyu-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2008
  • The line of sight(LOS) is affected by the vibration of spacecraft. It is necessary to predict the effect of disturbance on LOS stability. Reaction wheel assembly is anticipated to be the largest disturbance source on spacecraft. The disturbance which is occurred mainly due to the mass imbalance is analyzed with harmonic numbers. The accuracy and stability are verified by probability density function with dynamic equation of the satellite motion.

  • PDF

An Approximate Time-Effective Finite Element Method for Analyzing a Rotary Forging Process (회전단조공정 해석을 위한 실용적 유한요소법)

  • Moon H. K.;Lee M. C.;Chung J. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.117-121
    • /
    • 2005
  • In this paper, an approximate time-effective approach to rigid-plastic finite element method is presented with its solution scheme and a volume compensation method is proposed to simulate rotary forging processes. The applicability is examined by comparing the results obtained by the presented approach with those by the conventional approach. The approach is applied to simulation of a rotary forging process fur a wheel bearing assembly. The analyzed results are compared with the experimental results.

  • PDF