DOI QR코드

DOI QR Code

Optimal positioning of reaction wheel assemblies of optical observation satellite for minimizing image quality degradation

광학관측위성의 영상품질열화 최소화를 위한 반작용휠 최적위치 선정

  • Received : 2018.07.30
  • Accepted : 2018.11.29
  • Published : 2018.12.31

Abstract

This paper describes how to find out the optimum position of the reaction wheel assembly (RWA) to minimize image quality degradation through the integrated system jitter prediction combining the micro-vibration test with finite element analysis considering optical coefficients. Micro-vibration generated from RWA that is widely used for satellite maneuver, is one of key factors that degrades the quality of satellite image. Due to varying vibration characteristics of each RWA, its accommodation position may affect image quality even though the same company manufactured them. To resolve this issue, an integrated system jitter prediction is conducted with all possible RWA accommodation location, and finally we determine optimal RWA position from the analysis results.

본 논문에서는 반작용휠 미소진동시험 결과 및 유한요소모델 기반 광기계해석 통합모델을 이용해 영상품질저하 예측을 실시하고 해석결과를 바탕으로 기준 회전수에서 영상품질관점에서 최적의 반작용휠 배치조합을 찾는 것을 목적으로 한다. 위성은 적절한 기동성능을 위하여 여러 개의 반작용휠을 장착하는데 반작용휠에서 발생하는 미소진동은 위성영상품질 열화에 원인이 된다. 같은 반작용휠이라도 제조과정상 발생하는 제품의 진동특성차이가 있으며 이를 반영한 반작용휠의 배치설계는 최종 위성영상 성능품질 열화를 최소화시킬 수 있다. 이를 위해 본 연구에서는 모든 반작용휠의 배치상태를 선정하고 이에 따른 영상품질 열화해석을 실시하여 최소의 열화가 일어나는 반작용휠 배치조합을 찾아내었다.

Keywords

OJSSBW_2018_v12n6_9_f0001.png 이미지

Fig. 1 RWA Accommodation of CAS500-1

OJSSBW_2018_v12n6_9_f0002.png 이미지

Fig. 2 Flowchart for Jitter Calculation

OJSSBW_2018_v12n6_9_f0003.png 이미지

Fig. 3 Weighting Factor of Jitter & Drift

OJSSBW_2018_v12n6_9_f0004.png 이미지

Fig. 4 Test Set-up for Micro-vibrationMeasurement

OJSSBW_2018_v12n6_9_f0005.png 이미지

Fig. 5 Waterfall Plot of RWA Micro-vibration

OJSSBW_2018_v12n6_9_f0006.png 이미지

Fig. 6 Frequency Transfer Functions from RWAs to Focal Plane

OJSSBW_2018_v12n6_9_f0007.png 이미지

Fig. 7 Finite Element Model of CAS500-1 for Modal Test

OJSSBW_2018_v12n6_9_f0008.png 이미지

Fig. 8 Finite Element Model of CAS500-1 for Jitter Prediction

OJSSBW_2018_v12n6_9_f0009.png 이미지

Fig. 9 Optical Components of CAS500-1

OJSSBW_2018_v12n6_9_f0010.png 이미지

Fig. 10 LOS Jitter According to Various RWA Combination

Table 1 Specification of CAS500-1

OJSSBW_2018_v12n6_9_t0001.png 이미지

Table 2 Summary of Maximum Forces Under 500 Nominal RPM Operation

OJSSBW_2018_v12n6_9_t0002.png 이미지

Table 3 Summary of Maximum Forces Under -500 Nominal RPM Operation

OJSSBW_2018_v12n6_9_t0003.png 이미지

Table 4 Summary of Maximum Forces Under 1000 Nominal RPM Operation

OJSSBW_2018_v12n6_9_t0004.png 이미지

Table 5 Summary of Maximum Forces Under -1000 Nominal RPM Operation

OJSSBW_2018_v12n6_9_t0005.png 이미지

Table 6 Unitary Check of Optical Coefficients of Payload

OJSSBW_2018_v12n6_9_t0006.png 이미지

Table 7 Load Case Summary for Each RPM Speed

OJSSBW_2018_v12n6_9_t0007.png 이미지

Table 8 Jitter Analysis Results of CAS500-1

OJSSBW_2018_v12n6_9_t0008.png 이미지

References

  1. "Satellite-based Earth Observation Market Prospects to 2026", Euroconsult, 2017
  2. Kramer. H. J "Observation of the Earth and Its Environment", Springer, 2001
  3. Youngmok Hyun, Nakwan Kim, Domyung Kim, Jeongho Lee, Jinyoung Suk, Hee-Seob Kim, and Gyu-Sun Kim, "MTF Analysis for the Image Performance Prediction of Observation Satellites", SICE-ICASE International Joint Conference 2006, 2006
  4. Do-Soon Hwang, Jae Hyuk Lim, and Hyoung-Yoll Jun, Current Status and Future Prospects of Satellite Technology in Korea, Journal of the Korean Society for Aeronautical and Space Sciences, Vol.44(1), pp. 80-87, 2016. https://doi.org/10.5139/JKSAS.2016.44.1.80
  5. Abollfazl Shirazi and Mehran Mirshams, Pyramidal reaction wheel arrangement optimization of satellite attitude control subsystem for minimizing power consumption, Journal of Aeronautical & Space Science, Vol.15(2), pp. 190-198, 2014. https://doi.org/10.5139/IJASS.2014.15.2.190
  6. Zuliana Ismail and Renuganth Varasharajoo, Reaction Wheel Configurations for high and middle inclination orbits, ARPN Journal of Engineering and Applied Sciences, Vol.10, No.21, pp. 10034-10042, 2015
  7. Da Hyun Lee, Jae Hyuk, and Dae Gi Hong, Online Refocusing Algorithm Considering the Tilting Effect for a Small Satellite Camera, Journal of Aerospace System Engineering, Vol.12, No.4, pp. 64-74, 2018 https://doi.org/10.20910/JASE.2018.12.4.64
  8. Jae Hyuk Lim, Hee-Kownag Eun, Dae-Kwan Kim, Hong-Bae Kim, and Sung-Hoon Kim, Satellite finite element model updating for the prediction of the effect of micro-vibration, Journal of the Korean Society for Aeronautical and Space Sciences, Vol.42(8), pp. 692-700, 2014. https://doi.org/10.5139/JKSAS.2014.42.8.692
  9. Jae Hyuk Lim, A correlation study of satellite finite element model for coupled load analysis using transmissibility with modified correlation measures, Aerospace Science and Technology, Vol.33, Issue 1, pp. 82-91, 2014 https://doi.org/10.1016/j.ast.2014.01.002