• Title/Summary/Keyword: Wetland plants

Search Result 272, Processing Time 0.027 seconds

The biological assessment of water quality using DAIpo and TDI of Paju Ecological wetland (파주생태습지의 부착규조를 이용한 생물학적 수질평가)

  • Kim, Yong-Jin;Kim, Hun-Nyun;Lee, Ok-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.229-238
    • /
    • 2012
  • This research was to examine the physiochemical factors and the attached diatoms of ecological wetland in Paju from August 2010 to May 2011. As a result of physicohemical water quality assessment, the water temperature did not fluctuate much due to ample riparian vegetation and aquatic plants growing at the site. Due to the effect of Han River Estuary, site 4, 5 and 6 had high electricity conductivity. The BOD concentration was high at site 2, 3, and 4 caused by decrease in water quantity and inflow of polluted water. At all sites, T-N and T-P concentrations ranged from eutrophic to hypertrophic status. At the downstream, the T-N and T-P concentrations decreased by inhabiting aquatic plant. Total of 98 taxa of attached diatoms were found. As for dominant taxa, Achnanthes convergens, A. minutissima, Gomphonema gracile, G. parvulum, Melosira varians, Navicula seminulum, N. minima, N. pseudolanceolata, Nitzschia amphibia, N. palea, Surirella minuta and Synedra ulna var. fragilariodes appeared. The result of biological assessment of water quality rated the sites B(suboptimal)~D(poor) during seasons of low water temperature, Fall and Winter, with DAIpo ranging 24.1~68.2 and TDI of 48.4~85.6. During Spring and Summer, all sites were rated D(poor) with DAIpo lower than or equal to 40, and TDI above or equal to 70. The biological assessment of water quality at the research site showed inferior TDI result compared to that of DAIpo.

A Plan for Utilizing the Buffering Vegetation based on the Land use Type (토지이용 특성에 어울리는 완충식생 활용 계획)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2016
  • Since Gyungan stream is included in the protected zone of the water supply source of the Metropolitan area in Korea, the water quality needs to be continuously managed. Therefore, a measure is required that can inhibit the flow of water pollutant into the water body and facilitate the ecological restoration of riparian vegetation. A field survey was conducted on the hydrological characteristics of the landscape elements established on the downstream catchment of the Gyungan stream, the result of which showed that the paddy field and urbanized area can be regarded as point pollution sources. The upland field can be regarded as a non-point pollution source. In order to improve the water quality in the Paldang lake, we first recommended creating a riparian vegetation belt. We also suggested introducing a treatment wetland and an artificial plant island to places in which the creation of a riparian vegetation belt is not ensured. We recommend creating a treatment wetland equipped with diverse functional groups. For creating the plant island, we recommend Zizania latifolia and Typha orientalis, which showed the highest productivity among aquatic plants. The former could be introduced around the outlet of a paddy field and the estuary of tributaries, while the latter could be introduced to a water body directly sourced from mountainous land.

Utilization of nitrate stable isotopes of Chydorus sphaericus (OF Müller) to elucidate the hydrological characteristics of riverine wetlands in the Nakdong River, South Korea

  • CHOI, Jong-Yun;KIM, Seong-Ki;KIM, Jeong-Cheol;LA, Geung-Hwan
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Background: This study aimed to identify NO3--N sources using the stable isotope δ15N in Chydorus sphaericus (OF Müller), to investigate hydrological characteristics and nutrient states in artificial wetlands near the Nakdong River. Chydorus sphaericus is dominant in wetlands where aquatic plants are abundant, occurring in high density, and is sensitive to wetland water pollution, making it suitable for identification of NO3--N sources. Results: NO3--N sources for each wetland were strongly dependent on hydrological characteristics. Wetlands with sewage or rainfall/groundwater as their main sources had high levels of NO3--N, whereas wetlands with surface water as their main input had comparatively lower levels. Since wetlands with sewage and rainfall/groundwater as their main water sources were mostly detention ponds, their inputs from tributaries or the main river stream were limited and nutrients such as NO3--N easily become concentrated. Changes in NO3--N levels at each wetland were closely associated with δ15N of C. sphaericus. Interestingly, regression analysis also showed positive correlation between δ15N of C. sphaericus and NO3--N level. Conclusions: We conclude that the nitrate stable isotope (δ15N) of C. sphaericus can be used to elucidate the hydrological characteristics of riverine wetlands. This information is important for maintenance and conservation of artificial wetlands at the Nakdong River.

Water Purification and Ecological Restoration Effects of Sustainable Structured Wetland Biotop (SSB) System Established in the Habitat of the Endangered Species -Exemplified by An-teo Reservior Ecological Park in the Habitat of the Gold-spotted Pond Frog - (멸종위기종 서식처에 조성된 생태적 수질정화 비오톱 시스템의 수질정화 및 생태복원 효과 - 금개구리 서식처인 안터 저수지 생태공원 사례를 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.145-159
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was planned, designed, and finally constructed, and maintained in the An-teo Reservoir ecological park, which is the habitat of the endangered Gold-spotted Pond Frog. The system purifies polluted water of An-teo Reservoir which flows from up to bottom within the system. Water was sampled once a month at the inlet and at the outlet from December, 2009 to August, 2010. BOD5, SS, T-N and T-P were analyzed. Average influent and effluent BOD5 concentration was 2.9 and 1.0 mg/L, respectively, and BOD5 removal was 67%. SS concentration of influent and effluent averaged 18.1 mg/L and 2.5 mg/L, respectively, and SS abatement amounted to 86%. Average influent and effluent T-N concentration was 0.426 mg/L and 0.147 mg/L, respectively, and T-N retention was 66%. T-P concentration of influent and effluent averaged 0.071 mg/L and 0.022 mg/L, respectively, and T-P removal amounted to 68%. Plant and frog species of the system were monitored during the period. Amphibia and reptiles provided 7 species and 4 families including the Endangered Gold-Spotted Pond Frog (Rana chosenica ) which also lives in the system. Twenty-six plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. The endangered plants, Bladderwort (Utricularia vulgaris var. japonica ) and Euryale ferox were observed in An-teo Reservoir as well as in the system.

Effects of Natural Wetland in Reducing Nutrient Loadings from Rice Culture - Free-Range Ducks (RCFD) Paddy fields in Korea (오리농업재배 소유역내 자연습지가 오리농업시 유출되는 영양염류 부하량 저감에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-Youl;Choi, Young-Dae;Yun, Eul-Soo;Woo, Koan-Sik;Seo, Myung-Chul;Nam, Min-hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.249-256
    • /
    • 2009
  • The amount of nutrients from the effluents of rice culture - free-range ducks (RCFD) paddy fields and the effects of natural wetlands located at downstream of RCFD on water quality and aquatic plants was evaluated. This was carried out in a 61.9 ha paddy fields in Ulsan, Gyeongnam, where downstream is a 5.9 ha natural wetland, 61% of which was covered with well-developed aquatic plants. The amounts of T-N and T-P in the effluent from paddy field with RCFD were 13.7 and $2.5kg\;ha^{-1}$, respectively, which is 1.2~2.5 times higher than those observed in conventional rice culture practice. The amount of runoff from the RCFD area, calculated using the revised TANK model, was $543mm\;ha^{-1}$ with 808 kg of T-N and 130 kg of T-P during rice cultivation period. The dominant aquatic plants in the wetland includes Phragmites communis, Zizania latifolia, Persicaria thunbergii. etc. The nutrient contents of the aquatic plants which amounted to 761 kg of T-N and 103 kg of T-P were almost equivalent to 94% and 79% of the T-N and T-P in RCFD and CRC effluent. Therefore, the use and maintenance of wetlands in RCFDs area could be a good solution to management the non-point pollution from duck feces in RCFD paddy fields.

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland (인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악)

  • Lee, Soo-Dong;Bae, Soo-Hyoung;Lee, Gwang-Gyu
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.515-529
    • /
    • 2020
  • Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

The Discrimination and Vegetation Structure of Several Mountainous Wetlands in Chung-ju and Around Area (충주 및 주변지역 산지습지의 판별 및 식생 구조)

  • Kim, Hyeong Guk;Jeong, Young Sun;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • This study was surveyed to analyze vegetation structure of mountainous wetlands in Chung-ju city and around area from September to November, 2006. 6 sites of total 15 potential mountainous wetlands were discriminated throughout field survey. By classification system of mountainous wetlands presented in manual of forest wetlands research, types of wetlands were classified into slant and a flat. Many sites were covered with land plants as Pueraria thunbergiana and so on. To understand vegetation structure of mountainous wetlands, Height, DBH (diameter at breast height), DI (Dominance Index), Sociability and Constancy were surveyed and Based on this result, a projection chart was drawn. As results, Salix koreensis in tree layer and Persicaria thunbergii and Impatiens textori in herb layer were surveyed as broadly distributed species. This study is mainly focused on vegetation condition of mountainous wetlands. But, it will be needed studying on classification system of mountainous wetland type and functional assessment for conservation or management of wetlands.

The Identification and Vegetation Structure of Several Mountainous Wetlands in Dan-yang and Around Area (단양 및 주변 산지습지의 판별 및 식생 구조)

  • Kim, Hyeong-Guk;Jeong, Jin-Yong;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This study was accomplished to identify and analyze vegetation structure of Mountainous Wetlands in Dan-yang and around area, and surveyed from September to November, 2006. 6 sites of total 16 potential Mountainous Wetlands by GIS based wetland forecasting system (Korea National Arboretum, 2006) were identified as wetlands throughout field survey by the indicators such as hydrology, soil and vegetation. By classification system of Korea National Arboretum (2006), types of wetlands were classified into 3 slope-types and 3 flat-types. To understand vegetation structure of wetlands, height, DBH (diameter at breast height), DI (Dominance Index), sociability and constancy were surveyed and the projection diagram and charts ware drawn. As results, Salix koreensis in woody plant layer and Persicaria thunbergiiin and Juncus effusus var. decipiens in herb layer were surveyed as broadly distributed species. The wetlands of Dan-yang around area were similar to those of Chung-ju around area, but the species of plants and hydrology conditions were different. This study is mainly focused on vegetation condition of Mountainous Wetlands. But, further studies on functional assessment for management and restoration of wetlands were necessary.

Disinfection Efficiency of the Waste Stabilization Ponds Coupled with Aquatic Plant Ponds (산화지와 수생식물 처리지를 결합한 통합 처리 시스템의 살균효율에 관한 연구)

  • Kim, Youngchul;Jeong, Ha-Young;Lee, Rae-Bum;Lim, Gyeongeun
    • Journal of Wetlands Research
    • /
    • v.4 no.2
    • /
    • pp.23-41
    • /
    • 2002
  • In this paper, changes of the coliform bacteria were investigated when aquatic plant pond was used for separating algal particles from waste stabilization ponds(WSPs). Three different types of integrated natural systems were operated. It was found that there were no significant interferences for the disinfection efficiency of two integrated systems (WSPs coupled with water hyacinth ponds) used for treating domestic sewage and upgrading the secondary effluent as well. However, when constructed wetland (CW) was combined with the shallow algal ponds and used for the secondary effluent, it seriously interfered with the disinfection efficiency due to the regrowth and/or after-growth of the coliform bacteria, which can readily metabolize the amino acids and sugars leached from plants. In order to find out the primary disinfection parameters, several sets of the batch test were run. It was found that sunlight is the most predominant factor for the coliform decay. During the night, algal toxicity partly supports the decay but during the day, deteriorates it by attenuating the sunlight. The pH in the range of 4 to 10 did not affect the decay in the dark.

  • PDF