• Title/Summary/Keyword: Wet process

Search Result 1,260, Processing Time 0.035 seconds

A Study on Low Residue Flux for Improving Flip Chip Non-wet and Reliability (Flip Chip Non-wet 개선 및 신뢰성 향상을 위한 Low Residue Flux 구현 방안 연구)

  • Lee, Hyunsuk;Kim, Minseok;Kim, Taehoon;Moon, Kiill
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • As the difficulty of flip chip products increases, there is a growing interest in the material of flux, which is safe from the solder wetting and reliability. In the case of no clean flux, there is merit in terms of process efficiency because there is no cleaning process. But Cu migration and delamination can be occurred if the residue remains after the reflow process. In this study, major element materials, solvent and activator, are changed and confirmed effect of non-wet and reliability in the package environment. Stability of materials were secured through storage stability evaluation, and we found out non-wet zero materials through the application of two types of solvent and activator with different boiling point and the increase of activator content. After reliability test, no delamination was found in the plane analysis, which secured the final composition of low residue flux.

STUDY ON THE HIGH EFFICIENCY BURIED CONTACT SOLAR CELL WITH WET ETCHING PROCESS

  • Kang, Dae-Keun;Choi, Kang-Ho;Lee, Joo-Yul;Lee, Kyu-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.156-156
    • /
    • 2009
  • High efficiency silicon solar cell technology based on planar technology has been improved by various kinds of process by using the wet etching process. In particular, the buried contact solar cell has been successfully studied. In the present work, a simplified process of the buried contact solar cell has been suggested to help one design effectively the high-efficiency solar cell.

  • PDF

A free standing metal structures for MEMS switches (MEMS switch 응용을 위한 free standing 금속 구조물에 관한 연구)

  • Hwang, Hyun-Suk;Kim, Eung-Kwon;Kang, Hyun-Il;Lee, Kyu-Il;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.187-188
    • /
    • 2005
  • In this paper, big free standing metal structures for electrostatic MEMS switches are easily fabricated using photoresist sacrificial layer. The entire process sequence, through the removal of the sacrificial layer, is kept below 150 $^{\circ}C$ to avoid curing problem of photoresist sacrificial layer. Metal structure is fabricated by thermal evaporator and a self test electrode is fabricated underlying metal suspended structure for testing by electrostatic force. The new wet release process is considered using methanol rinse, general wet release process cause stiction problem by capillary force during drying, and the yield is dramatically improved than previous wet release process using DI water rinse. The fabrication becomes much simpler and cheaper with use of a photoresist sacrificial layer.

  • PDF

A Basic Study on Blade Coating Process of Piston Skirt by Applying the Technology of Screen Printing - Parametric Study (스크린 프린팅 기술을 적용한 피스톤 스커트의 브레이드 코팅공정에 관한 기초연구 - 매개변수 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.414-420
    • /
    • 2009
  • In this study, using the general expressions predicting the pressure under a blade and the volume of coating fluid passing through the blade edge, it is predicted the change of the coating wet film thickness related with various parameters determining the characteristics of this blade coating process. Using the results of this research, it can be found the optimized coating wet film thickness taking into account the parameters related with various coating process on various metal surfaces will be able to be predicted.

The Wet Etching Rate of Metal Thin Film by Sputtering Deposition Condition (스퍼터링 증착 조건에 따른 금속 박막의 습식 식각율)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1465-1468
    • /
    • 2010
  • The wet etching is a process using chemical solution and occurring chemical reaction on substrate surface. when we do wet etching process, we have to consider stoichiometry, etching time and temperature of etchant for good resolution. In this experiment, we used Cr, Al andIndium-tin-oxide (ITO) metal and we deposited them with DC sputtering machine. The Cr thin film metal thickness is about $1300{\AA}$, ITO films show a low electrical resistance and high transmittance in the visible range of an optical spectrum and Ai film is used for signal line. We measured and analysed wet etching properties on the metal thin films.

Life Cycle Assessment on Process of Wet Tissue Production (물티슈 제조공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • In this study, Life Cycle Assessment (LCA) of wet tissue manufacturing process was performed. The wet tissue manufacturing process consists of preparation of wetting agent (chemical liquid), impregnation of nonwoven fabric into wetting agent and primary and secondary packaging. Data and information were collected on the input and output of the actual process from a certain company and the database of the Korea Ministry of Environment and some foreign countries (when Korean unavailable) were employed to connect the upper and the lower process flow. Based on the above and the potential environmental impacts of the wet tissue manufacturing process were calculated. As a result of the characterization, Ozone Layer Depletion (OD) is 3.46.E-06 kg $CFC_{11}$, Acidification (AD) is 5.11.E-01 kg $SO_2$, Abiotic Resource Depletion (ARD) is $3.52.E+00\;1yr^{-1}$, Global Warming (GW) is 1.04.E+02 kg $CO_2$, Eutrophication (EUT) is 2.31.E-02 kg ${PO_4}^{3-}$, Photochemical Oxide Creation (POC) was 2.22.E-02 kg $C_2H_4$, Human Toxicity (HT) was 1.55.E+00 kg 1,4 DCB and Terrestrial Ecotoxicity (ET) was 5.82.E-04 kg 1,4 DCB. In order to reduce the environmental impact of the manufacturing process, it is necessary to improve the overall process as other general cases and change the raw materials including packaging materials with less environmental impact. Conclusively, the energy consumed in the manufacturing process has emerged as a major issue, and this needs to be reconsidered other options such as alternative energy. Therefore, it is recommended that a process system should be redesigned to improve energy efficiency and to change to an energy source with lower environmental impact. Due to the nature of LCA, the final results of this study can be varied to some extent depending on the type of LCI DB employed and may not represent of all wet tissue manufacturing processes in the current industry.

Urinary Metabolites of Dimethylformamide, Methyl Ethyl Ketone, and Toluene exposed Workers in Synthetic Leather Factories (일부 합성피혁 근로자들의 Dimethylformamide, Methyl Ethyl Ketone, Toluene 노출에 따른 요중 대사물질)

  • Choi, Ho-Chun;Kim, Kang Yoon;An, Sun-Hee;Lee, Young-Ja;Chung, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.135-144
    • /
    • 2001
  • This study was performed to measure airborne dimethylformamide(DMF), methyl ethyl ketone(MEK) and toluene and their urinary metabolites concentrations and to determine the relationship between airborne and urinary concentration. Airborne samples and their urinary metabolites were measured 98 male workers who work for 8 synthetic leather factories in a portion of Kyoung-In area. Urine samples were collected at end-of-shift to estimate the exposure levels. 1. The concentration of airborne DMF by process was 8.81 ppm for wet-mixing, 15.05 ppm for wet-coating, 6.03 ppm for dry-mixing, 5.58 ppm for dry-coating, 5.37 ppm for printing, and 9.03 ppm for total. There was statistically significant difference by process. Urinary NMF concentrations of wet-mixing, wet-coating, dry-mixing, dry-coating and printing were $90.55mg/{\ell}$, $79.80mg/{\ell}$, $39.86mg/{\ell}$, $25.23mg/{\ell}$, and $38.15mg/{\ell}$, respectively, and total geometric mean was $56.24mg/{\ell}$. There was significant difference by process. 2. The concentration of airborne MEK by process was 1.89 ppm for wet-mixing, 1.96 ppm for wet-coating, 10.33 ppm for dry-mixing, 29.24 ppm for dry-coating, 14.98 ppm for printing, and 4.87 ppm for total. There was statistically significant difference by process. Urinary MEK concentrations of wetmixing, wet-coating, dry-mixing, dry-coating and printing were $0.93mg/{\ell}$, $0.70mg/{\ell}$, $3.29mg/{\ell}$, $3.29mg/{\ell}$, and $1.06mg/{\ell}$, respectively, and total geometric mean was $1.25mg/{\ell}$. There was statistically significant difference by process. Urinary MEK 3. The concentration of airborne toluene by process was 0.35ppm for wet-mixing, 0.42ppm for wet-coating, 2.95ppm for dry-mixing, 11.67ppm for dry-coating, 4.88ppm for printing, 1.24ppm for total. There was statistically significant difference by process. Urinary hippuric acid concentrations of wet-mixing, wet-coating, dry-mixing, dry-coating and printing were 0.24g/g creatinine, 0.21g/g creatinine, 0.34g/g creatinine, 0.52g/g creatinine, and 0.29g/g creatinine, respctively and total geometric mean was 0.28g/g creatinine. There was statistically significant difference by process. 4. No. of exceeded KPEL was 40 workers(40.8%) for DMF(10ppm), 1 worker(1.0%) for MEK(200ppm), and no worker for toluene(100ppm). No. of exceeded KBEI was 62 workers(63.3%) for urinary NMF($40mg/{\ell}$), 29 workers(29.6%) for urinary MEK, 1 worker(1.0%) for urinary hippuric acid. 5. The regression equations were Log(NMF)=0.4094*Log(DMF)+1.3587(r=0.4516) for DMF, Log(MEKU)=0.1859*Log(MEK)-0.0324(r=0.3303) for MEK, Log(HA)=0.2106*Log(Toluene)-0.5685(r=0.4497) for toluene. Synthetic leather factory workers expose to 3 kinds of organic solvents which are DMF, MEK and toluene. Their urinary NMF and MEK levels were higher than their concentration levels through respiratory. It seems that the urinary levels were affected skin absorption for working habit and alcohol intake.

  • PDF

Integrated Wet Oxidation and Aerobic Biological Treatment of the Wastewater Containing High Concentration of Phenol (고농도 페놀 폐수의 습식산화와 호기성 생물학적 통합처리)

  • Choi, Ho-Jun;Lee, Seung-Ho;Yu, Yong-Ho;Yoon, Wang-Lai;Suh, II-Soon
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.244-248
    • /
    • 2007
  • The treatment of a model wastewater containing high concentration, 10 $g/{\ell}$, of phenol in an integrated wet oxidation-aerobic biological treatment was investigated. Partial wet oxidation under mild operating conditions was capable of converting the original phenol to biodegradable organic acids such as maleic acid, formic acid and acetic acid, the solution of which was subjected to the subsequent aerobic biological treatment. The wet oxidation was carried out at 150$^{\circ}C$ and 200$^{\circ}C$ and the initial pH of 1 to 12. The high temperature of 200$^{\circ}C$ and the acidic initial condition in the wet oxidation led to effluents of which biodegradability was higher in the subsequent biological oxidation process, as assessed by chemical oxygen demand (COD) removal. Homogeneous catalyst of $CuSO_4$ was also used for increasing the oxidation rate in the wet oxidation at 150$^{\circ}C$ and initial pH of 3.0. However, the pretreatment with the catalytic wet oxidation resulted in effluents which were less biodegradable in the aerobic biological process compared to those out of the non-catalytic wet oxidation at the same operating conditions.

Fabrication of uniform micropattern arrays using nonionic surfactant-based wet etching process of high purity aluminum (비이온계 계면활성제기반 고순도 알루미늄 습식식각을 통한 균일한 마이크로패턴 어레이 제작)

  • Jang, Woong-Ki;Jeon, Eun Chae;Choi, Doo Sun;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, the effects of a nonionic surfactant on the etch uniformity and the etch profile during the wet-etching process of high-purity aluminum were investigated for the fabrication of uniform micropattern arrays. To improve the surface roughness of a high-purity aluminum plate, a mechanical lapping process and an electrolytic polishing process were used. After electrolytic polishing process, the surface roughness, Ra, of the high-purity aluminum plate was improved from $1.25{\mu}m$ to $0.02{\mu}m$. A photoresist was used as an etching mask during the aluminum etching process, where the mixture of phosphoric acid, acetic acid, nitric acid, a nonionic surfactant and water was used as the aluminum etchant. Different amounts of the Triton X-100 nonionic surfactant were added to the aluminum etchant to investigate the effect of a nonionic surfactant during the wet-etching process of high-purity aluminum. The etch rate and the etch profile were measured by an optical interferometer and a scanning electron microscope.

A Compacted In-line Wet Etch/Cleaning System With a Reverse Moving Control System

  • Im, Seung-Hyeok;Cho, Eou-Sik;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.863-866
    • /
    • 2008
  • For the cost reduction in the fabrication of display panels, a reverse moving system was equipped to a compacted in-line wet etch/cleaning system. For the effect of the alternating movement of substrate on the wet etch process, ITO layers were etched in various moving modes of substrates and the results were compared and analyzed.

  • PDF