• 제목/요약/키워드: Wet Machining

검색결과 51건 처리시간 0.028초

나노인덴터와 KOH 습식 식각 기술을 병용한 Si(100) 표면의 마스크리스 패턴 제작 기술 (Maskless Pattern Fabrication on Si (100) Surface by Using Nano Indenter with KOH Wet Etching)

  • 윤성원;신용래;강충길
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.640-646
    • /
    • 2003
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as potential application to fabricate the surface nanostructures because of its operational versatility and simplicity. The objective of the work is to suggest new mastless pattern fabrication technique using the combination of machining by nanoindenter and KOH wet etching. The scratch option of the nanoindenter is a very promising method for obtaining nanometer scale features on a large size specimen because it has a very wide working area and load range. Sample line patterns were machined on a silicon surface, which has a native oxide on it, by constant load scratch (CLS) of the Nanoindenter with a Berkovich diamond tip, and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structure was made because of masking effect of the affected layer generated by nano-scratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved patterns can be used as a mold that will be used for mass production processes such as nanoimprint or PDMS molding process. All morphological data of scratch traces were scanned using atomic force microscope (AFM).

타이타늄 파이프의 내면 자기연마 가공에 관한 연구 (A Study on the Characteristics of Internal-Face Magnetic Abrasive Finishing for Titanium Pipe)

  • 이여해;문상돈;김영환;박원기;양균의
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.701-708
    • /
    • 2011
  • Although Titanium material has superior properties, it belongs to difficult-to-machine materials. The present research applies magnetic abrasive finishing to precision machining of internal-face of titanium pipes, and analyzed & assessed the influence of grinding conditions on magnetic abrasive effects through the removed amount and surface roughness of materials. There was the influence on grinding properties according to change of rotational speed, a total input of mixed powder and an input of grinding liquid, and when the total input, rotational speed and ratio of electrolytic iron versus magnetic abrasives are 8g and 1000rpm, it was most advantageous in aspects of surface roughness and material removal amount, and the grinding liquid remarkably improved the surface roughness and material removal amount only with addition of trace amounts of light oil rather than dry machining conditions. And a result of considering the influence on grinding properties by using an inert gas (Argon gas) for improving grinding properties of the internal-face of titanium pipe, the present research has obtained improvement effects in the removal amount and surface roughness through utilization of an inert gas.

기계화학적 극미세 가공기술을 이용한 PDMS 복제몰딩 공정용 서브마이크로 몰드 제작에 관한 연구 (A Study on the Fabrication of Sub-Micro Mold for PDMS Replica Molding Process by Using Hyperfine Mechanochemical Machining Technique)

  • 윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.351-354
    • /
    • 2004
  • This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45$^{\circ}$) on the deformation behavior and etching characteristic of silicon material were investigated.

  • PDF

탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구 (A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials)

  • 한흥삼
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF

연삭조건 변화에 따른 가공물의 온도 분포 (Temperature Distribution of Workpiece Varying with Grinding Condition)

  • 하만경;곽재섭;곽태경
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.59-65
    • /
    • 2002
  • Grinding temperature between a grinding wheel and a workpiece surface, rising rapidly during a machining operation, has bad effects on a surface integrity such as the burning, the residual stress and the crack. In this study, the temperature distribution was obtained briefly by the finite element method and the grinding temperature of a workpiece varying with the grinding condition was measured experimentally. For obtaining the grinding temperature, a thermocouple method was applied. Three thermocouples were inserted in a surface of each workpiece. Changed grinding conditions were the depth of cuts, the feedrate, the dry and wet grinding, the up and down grinding and the number of pieces.

펨토초 레이저 리소그라피 기술을 이용한 Fresnel zone plate 제작 연구 (Fabrication of Fresnel zone plate with femtosecond laser lithography technology)

  • 손익부;노영철;고명진
    • 한국레이저가공학회지
    • /
    • 제14권2호
    • /
    • pp.13-16
    • /
    • 2011
  • We fabricated the Fresnel zone plate using femtosecond laser lithography-assisted micro-machining, which is a combined process of nonlinear lithography and wet etching. We investigated the focusing properties by launching a 632.8nm wavelength He-Ne laser beam into the zone plate. The spot size of the primary focal point was $27{\mu}m$ and the intensity of focal point was 0.565W/$cm^2$.

  • PDF

보로실리케이트 표면의 나노/마이크로 패터닝을 위한 식각 시간, 하중에 따른 유기 힐록의 성장거동 관찰 (Observation of Growth Behavior of Induced Hillock for Nano/Micro Patterning on Surface of Borosilicate with Etching Time and Load)

  • 조상현;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.182-185
    • /
    • 2005
  • Indentation pattern and line pattern were machined on borosilicate(Pyrex 7740 glass) surface using the combination of mechanical machining by $Nanoi-indenter\circledR$ XP and HF wet etching, and a etch-mask effect of the affected layer of the nano-scratched and indented Pyrex 7740 glass surface was investigated. In this study, effects of indentation and scratch process with etching time on the morphologies of the indented and scratched surfaces after isotropic etching were investigated from an angle of deformation energies.

  • PDF

탄소섬유 에폭시 복합재료 연삭온도에 의한 연삭특성 (A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Material Grinding Temperature)

  • 한흥삼;이동주
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.65-70
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite surface grinding were suggested.

  • PDF

습식워터젯을 채용한 초정밀 절삭 가공시스템의 특허동향조사에 관한 연구 (Research for Patent Application Tendency in the Super Fine Machining System Using the Wet Waterjet)

  • 김성민;고준빈;박희상
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-12
    • /
    • 2009
  • Presently, the semiconductor industry has the chronic problem. In the semiconductor industry, it has the semiconductor wafer, a package, the optical filter cut by using the saw blade, the mold, a laser etc. The cutting technique has the difficulty due to the rising of the production cost by the wearing of mold, the poor quality problem due to generated heat at the moment of cutting procedure and curve cutting etc. The goal of this time of national research and development project is develop the apparatus for solving the problem that the existing cutting technique has. The technology is so called waterjet abrasive method. This technology will be mainly applied to cut a semiconductor package and a wafer. Two important things to be considered are ripple effect(in other words, the scale of a market) and simplicity of an application.

음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구 (A study on the Wear Estimation of End Mill Using Sound Frequency Analysis)

  • 조택동;이창희;손장영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.209-212
    • /
    • 2002
  • The wear process of end mill is a so complicated process that a more reliable technique is required for the monitoring and controling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed steel slot drill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. The tooth passing frequency appears as a harmonics form, and end mill wear is related with the first harmonic. It can be concluded from the result that the tool wear is correlate with the intensity of the measured sound at tooth passing frequency estimation of end mill wear using sound is possible through frequency analysis at tooth passing frequency under the given circumstances.

  • PDF