• Title/Summary/Keyword: Wet Air Oxidation

Search Result 34, Processing Time 0.028 seconds

A Study on the Thermal Characteristics in the GPV with Heat Release by Wet Oxidation (습식산화반응열을 고려한 GPV 내 열적 특성 해석)

  • Seo, Hyeon-Seok;Lee, Hong-Cheol;Yang, Jun-Seung;Ahn, Jae-Hwan;Hwang, In-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.392-397
    • /
    • 2009
  • Gravity pressure vessels find their use in the wet oxidation of sewage sludge, which can be defined as the oxidation of organic and inorganic substances in an aqueous solution or suspension by means of oxygen or air at elevated pressures and temperatures. Numerical analyses were carried out for investigating the flow characteristics and wet air oxidation in the reaction vessel with various conditions such as supply oxidation and the supply positions of oxidation, etc. Wet air oxidation is promoted in the vicinity of bottom in the reactor with increase of oxygen supply. Also, it is the best condition to the oxidation supply position of 150 m and oxidation flow of 0.06 kg/s in the GPV reactor as the remnant of sludge and creation of organic acids.

  • PDF

An Effective Process for Removing Organic Compounds from Oily Sludge

  • Jing, Guolin;Luan, Mingming;Chen, Tingting;Han, Chunjie
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.842-845
    • /
    • 2011
  • Wet air oxidation (WAO) of oily sludge was carried out using $Fe^{3+}$ as catalyst, placed in a 0.5 L batch autoclave in the temperature range of $250-330^{\circ}C$. Experiments were conducted to investigate the effects of temperature, the initial COD, reaction time, concentration of catalyst and $O_2$ excess (OE) on the oxidation of the oily sludge. The results showed that in the WAO 88.4% COD was achieved after 9 min reaction at temperature of $330^{\circ}C$, OE of 0.8 and the initial COD of 20000 mg/L. Temperature was found to have a significant impact on the oxidation of oily sludge. Adding a catalyst significantly improved the COD removal. Homogenous catalyst, $Fe^{3+}$, showed effective removal for pollutants. COD removal was 99.7% in the catalytic wet air oxidation (CWAO) over $Fe^{3+}$ catalyst. The results proved that the CWAO was an effective pretreatment method for the oily sludge.

A Study on the Flow Characteristics of an Oxidizer Feed Section for Wet-air Oxidation in Gravity Pressure Reactor (중력식 습식산화반응기 내 산화제 공급부의 유동특성에 관한 연구)

  • Lee, Hongcheol;Hwang, Inju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.10-13
    • /
    • 2016
  • The wet-air oxidation in gravity pressure reactor is effective for organic waste treatment with energy saving under high pressure and high temperature. But its oxidation control is difficulty because its multi-phase flow characteristics is very complicated. The flow characteristics of an oxidizer feed section in the gravity pressure reactor were investigated using numerical method which are verified by comparison with experimental results. In this study, the results showed that the flow rate of oxidizer have an effect on the generation of bubble around feed section.

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

Study of Stabilizing 5,6-dihydroxyindole with Coating Process Against Oxidation and Light (코팅프로세스를 사용한 5,6-디하이드록시인돌의 산화 및 광에 대한 안정화 연구)

  • Han, Sang-Keun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.518-527
    • /
    • 2013
  • 5,6-dihydroxyindole was easily oxidation with air and light Conditions. Availability of 5,6-dihydroxyindole was studied for hair dye as a precursor of melanin. This study used wet and dry coating process to stabilize 5,6-dihydroxyindole. In wet process used dimethicone and cyclometicone, the 5,6-dihydroxyindole had darkened through the drying process at $58^{\circ}C$. Wet coating process was inappropriate to stabilize the coating. In dry coating process, shea butter coating was stable until 3 days. Dextrin palmitate was most efficient ingredient to prevent oxidation by sun light and air until 7days. Oxidation test with 1.0% and 1.5% of dextrin palmitate was not different under conditions of sun light and air and was not dependent on contents. Vitamin E acetate under conditions of sun light and air, there were no significant effect in preventing oxidation.

Preparation of Ultrafine Mn-Zn Ferrite by Direct-Wet Synthesis and a Study of Magnetic Properties (습식직접 합성에 의한 초미분 Mn-Zn Ferrite의 합성과 자성특성에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.757-766
    • /
    • 1991
  • These powder properties were investigated and prepared of ultrafine Mn-Zn ferrite powder by Direct-wet process from variation of oxidation condition. H2O2 oxidation the products were ultrafine spherical particles of about 400${\AA}$ in diameter and superparamagnetics. H2O2 and Air oxidation, Coexistance ultrafine spherical particles of about 400${\AA}$ and cubic particles of about 1000${\AA}$. The products were constructed of superparamagnetic and ferromagnetic particles, and Magnetization were about 30 emu/g. Air Oxidation, Above 6 hr Air 120 ι/hr and 4 hr of Air 180 ι/hr were uniform cubic particles of above 1000${\AA}$. The products were ferromagnetic particles and Magnetization of above 45 emu/g.

  • PDF

Decomposition of Ethylene Glycol by Catalytic Wet Air Oxidation (촉매습식산화에 의한 Ethylene Glycol의 분해)

  • 안상준;최장승;이동근
    • Textile Coloration and Finishing
    • /
    • v.13 no.4
    • /
    • pp.264-271
    • /
    • 2001
  • Catalytic wet oxidation of ethylene glycol as refractory compound was studied in a batch slurry reactor using lwt% $Pt/A1_2O_3$, lwt% $Pt/TiO_2,\;Mn/CeO_2$(1:1) and 5wt% $Mn/Al_2O_3$. Experiments were conducted to investigate theeffects of temperature, initial ethylene glycol concentration, catalyst dosage and PH on the ethylene glycol decomposition. When compared with the uncatalyzed reaction, the use of catalysts could increase the rate of ethylene glycol decomposition. The lwt% $Pt/A1_2O_3$ catalyst was preferable to the other catalysts for the destructive oxidation of ethylene glycol. The reaction rate was first order with respect to initial concentration of ethylene glycol. In acidic condition the removal efficiency of ethylene glycol was good, but there was a significant leaching of platinum. Small amount of acetic acid, oxalic acid, masonic acid and formic acid as intermediates were detected during catalytic wet air oxidation of ethylene glycol.

  • PDF

Decomposition of Reactive Dyes by Catalytic Wet Air Oxidation Process(2) (촉매 습식산화에 의한 반응성 염료 분해(2))

  • Choi, Jang-Seung;Woo, Sung-Hoon;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2077-2083
    • /
    • 2000
  • For the application of wet air oxidation(WAO) process reactive dyes, remazol blacks has been selected as the subject for this study. The rate of decomposition relating to the reaction temperature and catalyst has been summarized during the catalytic wet air oxidation reaction. When 1.5 gram per liter of platinum is added titanium-dioxide and the partial pressure is adjusted to 6 atmosphere at the reaction temperature exceeding $200^{\circ}C$, more than 95% of the remazol blacks dyes were decomposed. When the reaction temperature was raised to $200^{\circ}C$, $220^{\circ}C$ and $250^{\circ}C$, respectively, for 240 minutes after adding the catalyst, the remaining rate of ultraviolet absorbance had dropped significantly to 18%, 12%, and 4%. At the reaction temperature of $250^{\circ}C$, color removal efficiency was approximately 95% or more after 120 minutes from the beginning of the reaction.

  • PDF

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.

Effect of chemical input during wet air oxidation pretreatment of rice straw in reducing biomass recalcitrance and enhancing cellulose accessibility

  • Morone, Amruta;Chakrabarti, Tapan;Pandey, R.A.
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2403-2412
    • /
    • 2018
  • The present study was aimed at evaluating the effect of variable sodium carbonate ($Na_2CO_3$) loading during wet air oxidation (WAO) pretreatment of rice straw in reducing biomass recalcitrance. The research study was intended to increase the cellulose recovery, hemicellulose solubilization, lignin removal in the solid fraction and limiting the generation of inhibitors in the liquid fraction while reducing the chemical input. The operating condition of $169^{\circ}C$, 4 bar, 18 min and 6.5 g/L $Na_2CO_3$ loading resulted in maximum cellulose recovery of 82.07% and hemicellulose solubilization and lignin removal of 85.43% and 65.42%, respectively, with a total phenolic content of 0.36 g/L in the liquid fraction. The crystallinity index increased from 47.69 to 51.25 along with enzymatic digestibility with an increase in $Na_2CO_3$ loading from 0 to 6.5 g/L as a result of removal of barriers for saccharification via effective cleavage of ether and ester bonds cross-linking the carbohydrates and lignin as indicated by FT-IR spectroscopy. A further increase in the $Na_2CO_3$ loading to 9.5 g/L did not significantly increase the sugar release. Thus, it was concluded that 6.5 g/L $Na_2CO_3$ during WAO is sufficient to increase the delignification and deacetylation, leading to significant changes in apparent cellulose crystallinity inter alia improvement in cellulose accessibility and digestibility of rice straw.