• 제목/요약/키워드: Welded Structural Material

검색결과 116건 처리시간 0.034초

프리스트레스트 프리캐스트 콘크리트 패널을 이용한 잔교식부두의 최적설계 (A Study on Design Optimization of Mooring Pier using Prestressed Precast Concrete Panel)

  • 조병완;태기호;김용철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.253-258
    • /
    • 2000
  • Recently, the area of design optimization, especially structural optimization, has been and to be a continuous active area of research. And the design optimizations of port facilities have been achieved by many other civil engineers. But the design optimization of port facilities were limited to the design optimization of the breasting dolphin. This paper invested the design optimization of mooring pier and the foundations of mooring pier was suggested considering the convenience of repair and reinforcement work. The mooring pier devised with prestressed precast concrete panel and rigid frame welded wide flange beam to steel pipe pile. To accomplish the design optimization of mooring pier, the Augmented Lagrangian Multiplier Method(ALM) of ADS(Garret N. Vanderplaats) optimization routine, BFGS method as optimizer and Golden Section Method as one dimensional search were utilized. As a result, thirty percent of material cost for construction was reduced by design optimization. The tensile stress of concrete panel and bottom flage was critical constraints under service load. So, using high strength concrete and steel will be economical. And lots of initial values must be invested to accomplish the design optimization in design procedures.

  • PDF

로켓모터용 노즐재의 관대관 마찰용접과 AE평가에 관한 연구 (A Study on Tube-to-Tube Similar Friction Welding of Rocket Motor Nozzle Material and its AE Evaluation)

  • 공유식;오세규;이배섭
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.66-73
    • /
    • 1999
  • This paper presents the experimental examinations and statistical quantitative analysis of the correlation between the cumulative counts of acoustic emission(AE) during plastic deformation periods of the welding and the tensile strength and other properties of the tube-to-tube welded joints of O.D. 30mm (I.D 18mm) nozzle steel. This is a new approach which attempts finally to develop real-time quality monitoring system for friction welding. And this study results in practical possiblility of real-time quality control more than 100% joint efficiency showing good weld no micro structural defects.

  • PDF

Optimum design of stiffened plates for static or dynamic loadings using different ribs

  • Virag, Zoltan;Jarmai, Karoly
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.255-266
    • /
    • 2020
  • The main requirements of modern welded metal structures are the load-carrying capacity (safety), fitness for production, and economy. The primary objective of attaching longitudinal stiffeners is to improve the buckling strength of relatively thin compression panels. This paper gives several comparisons for stiffened plates with different loadings (static, dynamic), different shape of stiffeners (flat, L-shape, trapezoidal), different steel grades, and different welding technologies (SMAW, GMAW, SAW), different costs to show the necessity of a combination of design, fabrication and economic aspects. Safety and fitness for production are guaranteed by fulfilling the design and fabrication constraints. The economy is achieved by minimizing the cost function. It is shown that the optimum sizes depend on the welding technology, the material yield stress, the profile of the stiffeners, the load cycles and the place of the production.

초소성 및 확산접합을 이용한 우주항공 부품 성형기술 개발 (Development of Aerospace Components Forming Technology using Superplasticity and Diffusion Bonding Characteristic)

  • 이호성;윤종훈;이영무
    • 한국군사과학기술학회지
    • /
    • 제8권3호
    • /
    • pp.51-55
    • /
    • 2005
  • In this paper, a near net shape technology using superplasticity and diffusion bonding characteristics was presented for application to various components of aircraft and missiles. Due to these special characteristics of some aerospace alloys, it is possible to produce complex components to shape very near final dimension with enhanced design freedom, reduced material usage, and overall saving of weight and cost. The high pressure vessel for a space launcher was fabricated with Ti-6Al-4V alloy by superplastic forming and diffusion bonding process and the failure characteristics are compared with conventionally fabricated vessel spin formed and TIG welded. The structural integrity of the superplastic forming and diffusion bonding process was successfully demonstrated.

마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구 (The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303))

  • 이규용;오세규
    • 수산해양기술연구
    • /
    • 제17권2호
    • /
    • pp.93-103
    • /
    • 1981
  • Si-Cr계 내열강 SUH3와 Cr-Ni계 stainless강 SUS 303 및 이들이 마찰용접재 SUH3-SUS303을 $1,060^{\circ}C$에서 용체화처리하고 다시 $700^{\circ}C$에서 10, 100시간 시효열처리한 각 시험편의 고온 피로강도에 대한 시효열처리의 효과를 알기 위하여 $700^{\circ}C$에서 고온 회전굽힘 피로시험을 하고 파약거동을 미시적으로 관찰하여 다음과 같은 결과를 얻었다. 1) SUH3재와 SUS303재의 최적마찰용접조건은 회전수 2420rpm, 마찰가압력 $8kg/mm^2$, 전 upset량 7mm(마찰가압시간 3sec, upset시간 2sec)이었다. 2) $700^{\circ}C$ 고온에서 장시간 이루어지는 고온피로시험에 있어, 용체화처리재의 S-N 곡선 경사부의 기울기가 가장 급하게 나타났다. 3) SUH3-SUS303 마찰용접재는 $1,060^{\circ}C$에서 1시간용체화 처리하고, $700^{\circ}C$에서 시효처리하는 경우 최적시효시간은 10시간이었다. 4) 10시간 시료재의 고온피로한도는 모재보다 SUH3은 75.4%, SUS303은 28.5% 높았으며, 용접재 SUH3-SUS303은 44.2% 정도 높았다. 100시간 시효재는 모재보다 SUH3은 64.91% SUS303은 30.4% 높았으며, SUH3-SUS303은 30.4% 높았으며, SUH3-SUS303은 36.6% 높았다. 5) 마찰용접재의 상온 및 고온의 피로파단은 모두 SUS303의 모재측에 발생하였으며, 용접면에서의 파단은 전혀 없었다. 6) SUS303재와 마찰용접재 SUH3-SUS303재의 크랙은 입내파양형이었으나 SUH3은 입계크랙의 전파로 파양한다.

  • PDF

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

용접부 기계적 물성치를 고려한 경수로 핵연료 지지격자의 충격해석 (Crush Strength Analysis of a Spacer Grid for PWR Nuclear Fuel Considering Mechanical Properties in Weld Zone)

  • 송기남;이상훈
    • 한국압력기기공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.7-13
    • /
    • 2012
  • A spacer grid which is one of the most important structural components in a pressurized water reactor fuel is an interconnected array of slotted grid straps, welded at the intersections to form an egg-crate structure. The spacer grid is required to not only protect fuel rods stably but also have sufficient lateral crush strength for the sake of enabling shut-down of the nuclear reactor during abnormal operating environments. Then, the lateral crush strength of the spacer grid is closely related with welding quality of the spacer grid. Previous research on the crush strength analysis of the spacer grid had been performed using only parent material properties. In this study, to investigate the effect on the crush strength of the spacer grid when used mechanical properties in weld zone instead of parent material properties, crush strength analysis considering mechanical properties in weld zone obtained from the instrumented indentation technique was performed and compared the results with the previous research.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

건축구조용 TMC 강관의 가공성능 평가 (Evaluation of Forming Performance of TMC Steel Pipes & Tubes for Building Structure)

  • 임성우;김종성;장인화
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.43-49
    • /
    • 2004
  • 건축물이 초고층화 및 장스팬화 됨에 따라 일반 구조용 강재에 비해서 강도도 높고, 판의 두께도 두꺼워지고, 성능도 우수한 신강종이 요구된다. TMC 강재는 내진성능이 우수하며, 용접성이 뛰어나고, 판두께가 뚜꺼워도 설계기준강도를 저감할 필요가 없기 때문에 건축구조물에 널리 사용된다. 그러나 대구경 후육강관에 TMC 강재를 사용하기 위해서는 2차 가공으로 인한 물성 변화가 건축구조물 안정성에 영향을 미치는가를 검토해야 한다. 본 연구에서는 SAW로 용접한 SM520TMC 강관의 물성 열화도를 평가하였다. 이때 실험변수로는 강관 제조 프로세스와 강종으로 하였다. 실험결과 강관을 롤 벤딩이나 프레스 성형으로 제관하든지 또는 강종이 국산 SM620TMC이냐 일본산 SM520TMC 이든지에 상관없이 항복강도와 인장강도는 증가하였고, 연신율은 저하하였다.