Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.2.255

Optimum design of stiffened plates for static or dynamic loadings using different ribs  

Virag, Zoltan (Institute of Mining and Geotechnical Engineering, University of Miskolc)
Jarmai, Karoly (Institute of Energy Engineering and Chemical Machinery, University of Miskolc)
Publication Information
Structural Engineering and Mechanics / v.74, no.2, 2020 , pp. 255-266 More about this Journal
Abstract
The main requirements of modern welded metal structures are the load-carrying capacity (safety), fitness for production, and economy. The primary objective of attaching longitudinal stiffeners is to improve the buckling strength of relatively thin compression panels. This paper gives several comparisons for stiffened plates with different loadings (static, dynamic), different shape of stiffeners (flat, L-shape, trapezoidal), different steel grades, and different welding technologies (SMAW, GMAW, SAW), different costs to show the necessity of a combination of design, fabrication and economic aspects. Safety and fitness for production are guaranteed by fulfilling the design and fabrication constraints. The economy is achieved by minimizing the cost function. It is shown that the optimum sizes depend on the welding technology, the material yield stress, the profile of the stiffeners, the load cycles and the place of the production.
Keywords
stiffened plates; stability; optimum design; static; fatigue loading; cost calculation;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Recommendations on Fatigue of Welded Components of the International Institute of Welding (2008), Doc. IIW-1823-07, ex. XIII-2151r4-07/XV-1254r4-07.
2 Remil A., K.H. Benrahou, K. Draiche, A.A. Bousahla and A. Tounsi (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct. Eng. Mech., 70(3), 325-337. https://doi.org/10.12989/sem.2019.70.3.325   DOI
3 Rosenbrock H.H. (1960), "An automatic method for finding the greatest or least value of a function", Comput. J., 3(3), 175-184. https://doi.org/10.1093/comjnl/3.3.175   DOI
4 Simoes L.M.C., Farkas J, Jarmai K. (2015), "Optimization of a cylindrical shell housing a belt-conveyor bridge", Comput. Struct., 147(15), 159-164. https://doi.org/10.1016/j.compstruc.2014.09.015   DOI
5 Tran K.L., Douthe C, Sab K, Dallot J, Davaine L. (2014), "Buckling of stiffened curved panels under uniform axial compression", Construct. Steel Res., 103,140-147. https://doi.org/10.1016/j.jcsr.2014.07.004   DOI
6 Virag Z, Jarmai K. (2003), "Parametric studies of uniaxially compressed and laterally loaded stiffened plates for minimum cost", International Conference on Metal Structures (ICMS), Millpress, Rotterdam, 237-242.
7 Virag Z. (2006), "Optimum design of stiffened plates", Pollack Periodica, 1(1), 77-92. https://doi.org/10.1556/Pollack.1.2006.1.6   DOI
8 Yoo CH, Choi BH, Ford EM. (2001), "Stiffness requirements for longitudinally stiffened box-girder flanges", ASCE J. Struct. Eng., 127(6), 705-711. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(705)   DOI
9 Zula T., Kravanja S. and Klansek U. (2016), "MINLP optimization of a composite I beam floor system", Steel Compos. Struct., 22(5), 1163-1192. https://doi.org/10.12989/scs.2016.22.5.1163   DOI
10 American Petroleum Institute API (1987), Bulletin on design of flat plate structures. Bulletin 2V. Washington.
11 Faiza K., D. Lamia, S. Mohamed, T. Abdelouahed and Mahmoud S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., 63(4), 439-446, https://doi.org/10.12989/sem.2017.63.4.439   DOI
12 Bourada M., A. Bouadi, A.A. Bousahla, A. Senouci, F. Bourada, A. Tounsi and S.R. Mahmoud (2019), "Buckling behavior of rectangular plates under uniaxial and biaxial compression", Struct. Eng. Mech., 70(1), 113-123. https://doi.org/10.12989/sem.2019.70.1.113   DOI
13 COSTCOMP (1990), Programm zur Berechnung der Schweisskosten. Deutscher Verlag fur Schweisstechnik, Dusseldorf.
14 Eurocode 3 (2005), Design of Steel Structures -Part 1-9: Fatigue; European Committee for Standardization (CEN).
15 Farkas J., Jarmai K. (1997), Analysis and Optimum Design of Metal Structures. Balkema, Rotterdam-Brookfield.
16 Farkas J., Jarmai K. (2000), "Minimum cost design and comparison of uniaxially compressed plates with welded flat-, L- and trapezoidal stiffeners", Welding in the World, 44(3), 47-51.
17 Farkas J., Jarmai K. (2003), Economic Design of Metal Structures, Millpress, Rotterdam.
18 Farkas J., Simoes M.C. and Jarmai K. (2005), "Minimum cost design of a welded stiffened square plate loaded by biaxial compression", Struct. Multidisciplinary Optimization, 29(4), 298-303. https://doi.org/10.1007/s00158-004-0385-0.   DOI
19 Farkas J, Jarmai K. (2013), Optimum Design of Steel Structures, Springer Verlag, Heidelberg, Germany.
20 Fernandes G.R. and Neto J.R. (2015), "Analysis of stiffened plates composed by different materials by the boundary element method", Struct. Eng. Mech., 56(4), 605-623. https://doi.org/10.12989/sem.2015.56.4.605   DOI
21 Georgioudakis M., Lagaros N.D. and Papadrakakis M. (2017), "Probabilistic shape design optimization of structural components under fatigue", Comput. Struct., 182, 252-266. https://doi.org/10.1016/j.compstruc.2016.12.008   DOI
22 Hadidi A. and Rafiee A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323   DOI
23 Hazim G. N., Jarmai K. (2019), "Kinematic-based structural optimization of robots", Pollack Periodica 14(3), 213-222. https://doi.org/10.1556/606.2019.14.3.20.
24 Hooke, R.; Jeeves, T.A. (1961), "'Direct search' solution of numerical and statistical problems", J. Assoc. Comput. Machinery (ACM). 8(2), 212-229. https://doi.org/10.1145/321062.321069   DOI
25 Jarmai K., Snyman J.A., Farkas J. (2006), "Minimum cost design of a welded orthogonally stiffened cylindrical shell", Comput. Struct., 84(12),787-797. https://doi.org/10.1016/j.compstruc.2006.01.002   DOI
26 Ji Jin, Ding Xiaohong, Xiong Min (2014), "Optimal stiffener layout of plate/shell structures by bionic growth method", Comput. Struct., 135(15), 88-99. https://doi.org/10.1016/j.compstruc.2014.01.022   DOI
27 Kaveh A., Kalateh-Ahani M. and Fahimi-Farzam M. (2014), "Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach", Earthq. Struct., 7(3), 271-294. https://doi.org/10.12989/eas.2014.7.3.271   DOI
28 Kaveh A., Fahimi-Farzam M. and Kalateh-Ahani M. (2015), "Optimum design of steel frame structures considering construction cost and seismic damage", Smart Struct. Syst., 16(1), 1-26. https://doi.org/10.12989/sss.2015.16.1.001   DOI
29 Kim H.S., Park Y.M., Kim B.J. and Kim K. (2018), "Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending", Struct. Eng. Mech., 65(2), 141-154. https://doi.org/10.12989/sem.2018.65.2.141   DOI
30 Kim B.J., Y.M. Park, K. Kim and B.H. Choi (2019), "Web bend-buckling strength of plate girders with two longitudinal web stiffeners", Struct. Eng. Mech., 69(4), 383-397. https://doi.org/10.12989/sem.2019.69.4.383   DOI
31 Kovacs Gy., Farkas J. (2017), "Minimum cost design of overhead crane beam with box section strengthened by CFRP laminates", Struct. Eng. Mech., 61(4), 475-481. https://doi.org/10.12989/SEM.2017.61.4.475   DOI
32 Mikami I, Niwa K. (1996), "Ultimate compressive strength of orthogonally stiffened steel plates", J. Struct. Engng ASCE, 122(6), 674-682. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(674)   DOI
33 Mittelstedt C. (2008), "Explicit analysis and design equations for buckling loads and minimum stiffness requirements of orthotropic and isotropic plates under compressive load braced by longitudinal stiffeners", Thin-Wall. Struct., 46(12), 1409-1429. https://doi.org/10.1016/j.tws.2008.03.007   DOI
34 Kim D.K., Poh B.Y., Lee J.R. and Paik J.K. (2018), "Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation", Struct. Eng. Mech., 68(2), 247-259. https://doi.org/10.12989/sem.2018.68.2.247   DOI
35 Nguyen-Thoi T. et al. (2013), "Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements", Comput. Struct., 125, 100-113. https://doi.org/10.1016/j.compstruc.2013.04.027   DOI
36 Paik J.K., Thayamballi A.K., Kim B.J. (2001), "Large deflection orthotropic plate approach to develop ultimate strength formulations for stiffened panels under combined biaxial compression/tension and lateral pressure", Thin-Wall. Struct. 39(3), 215-246. https://doi.org/10.1016/S0263-8231(00)00059-8   DOI