• 제목/요약/키워드: Weld metal zone

검색결과 351건 처리시간 0.023초

FEM을 이용한 초음파 용착부의 온도분포 해석 (Temperature Distribution Analysis of Welding Parts in Ultrasonic Welding by Using FEM)

  • 강은지;민경탁
    • 한국생산제조학회지
    • /
    • 제25권2호
    • /
    • pp.105-111
    • /
    • 2016
  • Ultrasonic metal welding, unlike the conventional welding techniques, does not require an external heat source, welding rod, or filler metal. Therefore, ultrasonic metal welding is not only economical but also environment-friendly, and hence, it has been receiving much attention. In ultrasonic welding, heat is generated because of the plastic deformation and the friction between both surfaces of the welded materials. It is important to identify the heat-affected zone by measuring the temperature generated at the weld. In this study, the effects of the welding pressure, welding time, and vibration amplitude on the temperature distribution in the weld were evaluated by performing a transient thermal analysis of the heat generated during ultrasonic metal welding. The experimental results indicated that the temperature of the weld tends to increase with the welding time and vibration amplitude. However, an increase in the pressure does not affect the temperature of the weld largely.

계장화 압입시험법에 의한 Alloy 617 용접 물성치 측정 (Measurement of Weld Material Properties of Alloy 617 Using an Instrumented Indentation Technique)

  • 송기남;홍성덕;노동성;이주하;홍정화
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.41-46
    • /
    • 2013
  • Different microstructures in the weld zone of a metal structure such as a fusion zone or heat affected zone are formed as compared to the parent material. Thus, the mechanical properties in the weld zone are different from those in the parent material. As the basic data for reliably understanding the structural characteristics of a welded PCHE specimen to be made of Alloy 617, the mechanical properties in the weld zone and parent material for a Alloy 617 plate are measured using an instrumented indentation technique in this study.

계장화 압입시험법에 의한 SUS316L판의 용접부 기계적 물성치 측정 (Measurement of Weld Mechanical Properties of SUS316L Plate Using an Instrumented Indentation Technique)

  • 송기남;홍성덕;노동성
    • Journal of Welding and Joining
    • /
    • 제31권2호
    • /
    • pp.37-42
    • /
    • 2013
  • Different microstructures in the weld zone of a metal structure such as a fusion zone or heat affected zone are formed as compared to the parent material. Thus, the mechanical properties in the weld zone are different from those in the parent material. As the basic data for reliably understanding the structural characteristics of welded PCHE prototype made of SUS316L, the mechanical properties in the weld zone and parent material for a SUS316L plate are measured using an the instrumented indentation technique in this study.

십자형(十字形) 필렛 용접(熔接) 이음의 형상변화(形狀變化)에 따른 소성적(塑性的) 거동(擧動)에 대한 연구(硏究) (A Study on Plastic Behaviour of Cruciform Welding Joint with Variation of Contour)

  • 엄동석;강병윤
    • 대한조선학회지
    • /
    • 제18권4호
    • /
    • pp.21-29
    • /
    • 1981
  • In this paper, plastic behavior and plastic strength of cruciform fillet welded joint under tension is investigated by finite element method. Attension is focussed, in particular, on the effect of geometry of fillet weld including its contour, size and penetration. And the approximate analysis of welded joint have been carried out from a simple model constructed by three zone, ie, base metal, heat affected zone, and weld metal.

  • PDF

다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향 (Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal)

  • 방국수;정호신;박찬
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

SWS 490A 강의 용접 열영향부 음향방출 특성에 대한 연구(2) (A Study on the Acoustic Emission Characteristics of Weld Heat Affected Zone in SWS 490A Steel(2))

  • 이장규;우창기
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.104-113
    • /
    • 2006
  • The main objective of this study is to investigate the effect of compounded welding by using acoustic emission (AE) signals and doing a source location for weld heat affected zone (HAZ) through tensile testing. This study was carried out an SWS 490A high strength steel for electric shield metal arc welding, SMAW; $CO_2$ gas metal arc welding, GMAW($CO_2$); and gas tungsten arc welding, GTAW/TIG. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. For instance, Gutenberg-Richter magnitude-frequency relationship (G-R MFR) offers useful b-value in data analysis. Namely event identification, source location gives the X- and Y-coordinates of the AE source. And K-means clustering analysis by Euclidean distance confirmed that was powerful to source location. Generally, strength of welded metal zone was stronger than strength of base metal. As the result, confirmed certainly that fracture is produced in HAZ instead of welded metal zone from source location.

SM45C 중실축의 마찰용접 기계적 특성에 관한 연구 (A Study on the Mechanical Properties of the Friction Welding with Solid Shaft of SM45C)

  • 구건섭
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.932-937
    • /
    • 2012
  • In the presented study, SM45C carbon steel parts were joined by friction welding. The welding process was carried out under optimized conditions using statistical approach. The study of SM45C is conducted with various combinations of process parameters. Parameter optimization, microstructure and mechanical property correlation are the major contribution of the study. The welded joints were produced by varying spindle revolution speed, friction pressure, upset pressure and burn-off length. Tension tests were applied to welded parts to obtain the strength of the joints. Fracturs properties were additionally obtained experimentally under fluctuated tensile loads. Microstructures using microphotographs were examined in the weld interface and weld region and heat affected zone and base metal and flash zone of welded parts. Finally, Hardness variations in welding zone and base metal were also obtained. Through these tests, the optimum conditions of parameters for ${\phi}20$ SM45C in friction welding were obtained when the friction spindle revolution was 1,950 rpm, the friction pressures was 30 MPs, upset pressures was 50 MPs.

가스텅스텐아크 용접한 클래드(A4045/A3003) 알루미늄 합금의 기계적성질 및 미세조직 (Microstructure and Mechanical Properties of Clad(A4045/A3003) Al Alloy by Gas Tungsten Arc Welding)

  • 김기빈;국진선;윤동주;김병일;이일천
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.73-78
    • /
    • 2008
  • In this paper, research was the variation of microstructure and mechanical properties of clad(A4045/A3003) Al alloy sheet by gas tungsten arc welding. Tensile properties of the gas tungsten arc welding joint decreased because of the softened heat affected zone(HAZ). The hardness of HAZ was lower than that of base metal, because relieved the work hardening effect of the welding heat. Hardness distribution of the weld zone with the base metal appears similarly, but the hardness of HAZ decreased remarkably. The microstructure in the weld zone of A4045 clad layer was formed a coarse columner grains of Si-rich. In the case of large weld heat input, the Si of the A4045 were diffused and until A3003 weld zone they decreased the strength.

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.