• Title/Summary/Keyword: Weld metal

Search Result 1,055, Processing Time 0.027 seconds

The Effects of Microstructure on Cold Crack in High-Strength Weld Metals (고강도 용착금속의 미세조직이 저온균열에 미치는 영향)

  • Lee, Myung-Jin;Kang, Nam-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • In the past, cold crack was commonly observed in the HAZ(heat affected zone) of high-strength steels. Applying to TMCP(thermo-mechanical controlled process) and HSLA(high strength low alloy) steels, cold crack tends to increase the occurrence in the weld metal. It is generally understood that cold crack occurs when the following factors are present simultaneously : diffusible hydrogen in the weld metal, a susceptible microstructure and residual stress. In particular, many studies investigated the microstructural effect on the cold crack in HAZ and the cold crack in weld metals starts to receive the special attendance in modern times. The purpose of the study is to review the effect of weld microstructures (grain boundary ferrite, Widm$\ddot{a}$nstatten ferrite, acicular ferrite, bainite and martensite) on cold crack in the weld metals. Among various microstructures of weld metals, acicular ferrite produced the greatest resistance to the cold crack due to the fine interlocking nature and high-angle grain boundary of the microstructure.

Analysis of Adhesive Slag Formed on Weld Metal Surface of GTAW Welding after Flux Cored Multi-Pass Welding (FCAW 다층 용접 후 표면 GTAW 용접시 표면 용접부에 생성된 고착 슬래그 분석)

  • Kim, Jung-Min;Kim, Nam-Kyu;Kim, Gi-Dong;Park, Ji-Hong
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.14-19
    • /
    • 2015
  • This study has been performed to investigate the adhesive slag at GTAW weld zone after FCAW multi-pass welding. The cause of adhesive slag formation was examined using optical microscope, field emission scanning electron microscope(FE-SEM) and XRD analysis. The results obtained in this experiment are summarized as follows. Slag of GTAW weld zone surface during welding were formed by mixing the presence of slag in FCAW weld zone. While the slag cools, Cr-spinel phase were formed due to reactions in slag/metal interface. Also, a Cr moves form the weld metal to the slag to strong affinity between oxide atoms and Cr atoms. Hence, detachability of slag was exacerbated by decreasing the interfacial tensions between slag and weld metal.

Behaviors of Microstructure and Properties in API X70 SAW Weld (API X70 후육강관 SAW용접부 미세조직 및 인성 거동에 대한 연구)

  • Uhm Sang-Ho;Kim Sung-Wook;Kim Jong-Hyun;Lee Chang-Hee;Kim Gwang-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.66-74
    • /
    • 2005
  • API(American Petroleum Institute) steel, as a line pipe material, requires the enhanced mechanical and chemical properties with the environmental severity. Especially, the weld part(weld metal and heat affected zone) is an important region for the safety. However, the study for the behavior of microstructure and toughness in multi-pass welding is seldom. In this study, the relationship between the microstructure and toughness of welds with several welding, bending and heat-treatment conditions was examined. In particular, HIC property in the weld metal was evaluated. The microstructure and toughness in multi-passed HAZ seemed to be determined by the final welding thermal cycle and the low toughness was attributed to the MA constituents formed in the intercritically reheated region. The weld metal showed very low toughness and it was not improved by the change in bending and heat treatment conditions. Additionally, the cracks are observed in the weld metal. from these results, it was found that the choice of welding wire/flux is very important.

Low Heat Input Welding to Improve Impact Toughness of Multipass FCAW-S Weld Metal

  • Bang, Kook-soo;Park, Chan;Jeong, Ho-shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.540-545
    • /
    • 2014
  • Multipass self-shielded flux cored arc welding with different heat inputs (1.3–2.0 kJ/mm) was conducted to determine the effects of the heat input on the proportion of the reheated region, impact toughness, and diffusible hydrogen content in the weld metal. The reheated region showed twice the impact toughness of the as-deposited region because of its fine grained ferritic-pearlitic microstructure. With decreasing heat input, the proportion of the reheated region in the weld metal became higher, even if the depth of the region became shallower. Accordingly, the greatest impact toughness, 69 J at −40℃, was obtained for the lowest heat input welding, 1.3 kJ/mm. Irrespective of the heat input, little difference was observed in the hardness and diffusible hydrogen content in the weld metal. This result implies that low heat input welding with 1.3 kJ/mm can be performed to obtain a higher proportion of reheated region and thus greater impact toughness for the weld metal without the concern of hydrogen cracking.

An Experimental Study on the Turning Property of Welded Material (용접부의 선삭특성에 관한 실험적 연구)

  • Jang, Bok-Deuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.13-21
    • /
    • 1986
  • Turning property of metal is affected by the cutting condition, tool geome- try and cutting material. But the turning property of welded material is not welknown. Welded structures usually contain nonhomogeneity, defects and resi- dual stresses due to differential contraction between welded metal and base metal. In this paper, authors conducted the experimental test on the turning property, by changing turning condition and welding electrodes of the welded specimens. The results obtained in these experimental tests are as follows; (1) Within the limit of this experimental test, the cutting force of the weld zone is bigger than that of base metal, and this phenomena is caused by the different mechanical property of the weld zone. The range of the variation of cutting force in the weld zone is caused by the nonhomogeneity of the weld zone, respectively. (2) The surface roughness follows the general characteristic of the effect of cutting condition on the surface roughness and the surface roughness of the weld zone shows coarse surface comparing with that of the base metal. (3) The specimen welded by the electrode E4301, shows worse cutting property than that of E4361 and E4313.

  • PDF

A study of model for nitrogen permeation in TIG welding of super duplex stainless steel (슈퍼듀플렉스 스테인리스강의 TIG 용접에서 질소 침투 모델에 관한 연구)

  • Lee, Jae-Hyoung;Jung, Byong-Ho;Cho, Sang-Myung;Jun, Jae-Ho
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.68-74
    • /
    • 2015
  • Superduplex stainless steels are important materials to the oil and gas industry, especially for off-shore production. TIG welding of super duplex stainless steels to obtain the optimal phase balance between austenite and ferrite is mainly achieved by controlling the cooling rate and the weld chemistry. The latter depends on the filler wire chosen and the shielding gas used. If TIG welding of superduplex stainless steels is performed with argon shielding gas only, then nitrogen gets lost from the weld pool, which can result in a ferrite-rich weld metal, with an inferior corrosion resistance than parent metal. In the present study, nitrogen permeation model from the shield gas which gets into the weld metal in DCEN-TIG welding has suggested. This plasma stream model shows characteristics of permeation of nitrogen ions into the molten metal due to the strong physical effect of plasma stream which formed by the arc pressure rather than the permeation of nitrogen ions caused by electric effect.

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

A Study on the Variation of Elements Loss of Wires and Oxygen Content of Weld Metal in GMAW (GMA용접에서 와이어 탈산원소 손실 및 용접금속 산소 변화 연구)

  • 방국수;장웅성
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 1998
  • The effects of welding conditions of gas metal arc welding on the elements loss of solid wire, oxygen content and impact toughness of weld metals were studied. Deoxidizing elements loss was increased with increase of arc voltage in both short-circuit transfer mode and globular transfer mode. It is believed that increase of arc voltage results in increase of reaction time between elements in the droplet and surrounding gas at the end of wire and in the arc column. Based on the thermodynamic equilibrium model, the oxygen content of weld metal can be predicted with the content of silicon and manganese as following : [%O] = $K([%Si][%Mn])^{-0.25}$, K = -15518/T+6.01. The equilibrium temperature was dependent on shielding gas, and it was 187$0^{\circ}C$ for $CO_2$ gas and 180$0^{\circ}C$ for 20%$CO_2$-80%Ar gas. The oxygen content of weld metal which shows maximum impact toughness was varied with deoxidizing alloy system of wires, 0.041 wt% for Si-Mn type wire and 0.026 wt% for Si-Mn-Ti type wire.

  • PDF

A Study on Machining Effects on Residual Stress at Dissimilar Metal Weld Region (기계가공이 이종용접부의 잔류응력에 미치는 영향에 관한 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Geun;Lee, Seong-Ho;Park, Chi-Yong;Lee, Seung-Geon;Park, Jai-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.56-63
    • /
    • 2011
  • his paper aimed to understand the residual stress in the dissimilar metal welds of nuclear power plant. Two kinds of residual stress were considered, which caused by welding and machining. Residual stress due to mechanical machining was measured by hole-drilling technique and x-ray diffraction method for the SA508 and F316L. Weld residual stress at dissimilar metal weld between SA508 and F316L was evaluated by FEA. Residual stress profiles were obtained for the inside surface and through thickness of welds. Machining effect was also analyzed by FEA. According to the residual stress measurement, it was observed that mechanical machining can generate tensile stress on the surface of the test material. However, FEA results showed that mechanical machining did not increase the tensile stress on the surface of weld region. Further study with more elaborate measurement and numerical analysis is required to identify the effect of machining on residual stress in the dissimilar metal weld region.

Analysis of Flux′s Conduct by Bead Welding in SAW (SAW 비드 용접을 통한 Flux 거동 해석)

  • 이재윤;이성호;이보영
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.245-247
    • /
    • 2003
  • Elements of Pure Weld Metal(PWM) is important factor that understand to analyze Flux's conduct in SAW welding. For elements of PWM were got, Pile-up welding over 10 floor have used in the past. But, it take a long time to analyze elements of PWM in this method. Elements of Pure Weld Metal is needed to seize more easily. In this research, Bead welding is used to graps an element of Pure Weld Metal using mathematical formula which get to be derivation.

  • PDF