• Title/Summary/Keyword: Weighted sum

Search Result 494, Processing Time 0.033 seconds

Combined Convection and Radiation in a Tube with Circumferential Fins and Circular Disks

  • Kim, Namjin;Lee, Jaeyong;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1725-1732
    • /
    • 2002
  • Combined convection and radiation heat transfer in a circular tube with circumferential fins and circular disks is investigated for various operating conditions. Using a finite volume technique for steady laminar flow, the governing equations are solved in order to study the flow and temperature fields. The P- 1 approximation and the weighted sum of gray gases model (WSGGM) are used for solving the radiation transport equation. The results show that the total Nusselt number of combined convection and radiation is higher than that of pure convection. If the temperatures of the combustion gas and the wall in a tube are high, radiation becomes dominant. Therefore, it is necessary to evaluate the effect of radiation on the total heat transfer.

Voice Source Modeling Using Weighted Sum-of-Basis-Functions Model (기저함수의 가중합을 이용한 음원의 모델링)

  • 강상기
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.171-174
    • /
    • 1998
  • 본 논문에서는 음성합성(speech synthesis) 및 부호화(coding) 시스템에 있어서 음원(voice source) 모델링에 관한 문제를 살펴보고자 한다. 기존의 음원 모델링 시스템이 가지고 있는 여러 문제들을 극복하고자 기저함수(basis function) 의 가중 합(weighted-sum)으로 음원을 모델링 하는 새로운 기법을 제안하고자 한다. 제안한 방법에서는 음원 파형(voice source waveform)을 적절히 표현하기 위해서 필터뱅크(filter bank)에 기초한 기저함수의 가중 합으로 나타낸다. 다양한 음원 특성을 효과적으로 나타내는 음원 파라미터를 구하기 위하여 EM(estimate maximize)에 기초한 구조에 관해 조사한다. 제안한 방법을 이용하여 다양한 유성음에 대해 실험을 수행하였다. 실험결과 제안한 추정(estimation) 방법 및 모델링 방법을 이용하면 기존의 방법에 비해 더 정확한 음원 파형을 추정할 수 있고, 다양한 음원 특성을 나타낼 수 있다. 또한 음성합성 및 부호화에서도 음성품질(voice quality)를 개선시킬 수 있으리라 기대된다.

  • PDF

On the Almost Certain Rate of Convergence of Series of Independent Random Variables

  • Nam, Eun-Woo;Andrew Rosalsky
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • The rate of convergence to a random variable S for an almost certainly convergent series $S_n = \sum^n_{j=1} X_j$ of independent random variables is studied in this paper. More specifically, when $S_n$ converges to S almost certainly, the tail series $T_n = \sum^{\infty}_{j=n} X_j$ is a well-defined sequence of random variable with $T_n \to 0$ a.c. Various sets of conditions are provided so that for a given numerical sequence $0 < b_n = o(1)$, the tail series strong law of large numbers $b^{-1}_n T_n \to 0$ a.c. holds. Moreover, these results are specialized to the case of the weighted i.i.d. random varialbes. Finally, example are provided and an open problem is posed.

  • PDF

A Study on the Performance Evaluation ofNe controller using Ball-Bar (Ball-Bar를 이용한 NC Controller 성능 평가 연구)

  • Shin, Chang-Ho;Lee, Eung-Suk;Suh, Suk-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1033-1038
    • /
    • 1995
  • NC 공작기계의 contour 운동 오차를 측정하기 위하여 사용되는 Ball-Bar에 의한 원호 보간 시험 데이터를 이용하여 NC controller의 성능을 평가 할 수 있는 S/W에 의한 방법을 제시한다. 본 논문에서 지금까지는 분석이 어려웠던 Masrer-Slave Changeover의 분석을 가능하게 하였으며, Ball-Bar로 부터 얻어지는 데이터를 Weighted Residual Method에 의한 종합적인 분석을 하였으며, 오차 원인별 비교를 위해 Eztra Sum of Squares Method를 도입하였다. 본 연구의 실제 적용을 위한 측정 및 분석 S/W를 개발하였으며, 결과적으로 NC controller의 성능평가에 유용함을 알 수 있었다. 무부하 조건에서의 Ball-Bar에 의한 분석 데이터와의 비교를 위하여 원형 시편을 가공하고, 진원도 측정 및 분석을 통하여 유사한 오차 pattern을 가짐을 알 수 있었다.

  • PDF

Pareto optimum design of laminated composite truncated circular conical shells

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.397-408
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite truncated circular conical shells subjected to external uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain optimal solutions of the design problem. The first-order shear deformation theory (FSDT) is used in the mathematical formulation of laminated truncated conical shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and boundary conditions on the optimal design is investigated and the results are compared.

Multiobjective optimum design of laminated composite annular sector plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.121-132
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite angle-ply annular sector plates subjected to axial uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain the optimum solutions of the design problem. The first-order shear deformation theory is used for the mathematical formulation. Finally, the effects of different weighting factors, annularity, sector angle and boundary conditions on the optimal design are investigated and the results are compared.

ON COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES WITH APPLICATION TO MOVING AVERAGE PROCESSES

  • Sung, Soo-Hak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.617-626
    • /
    • 2009
  • Let {$Y_i$,-$\infty$ < i < $\infty$} be a doubly infinite sequence of i.i.d. random variables with E|$Y_1$| < $\infty$, {$a_{ni}$,-$\infty$ < i < $\infty$ n $\geq$ 1} an array of real numbers. Under some conditions on {$a_{ni}$}, we obtain necessary and sufficient conditions for $\sum\;_{n=1}^{\infty}\frac{1}{n}P(|\sum\;_{i=-\infty}^{\infty}a_{ni}(Y_i-EY_i)|$>$n{\epsilon})$<{\infty}$. We examine whether the result of Spitzer [11] holds for the moving average process, and give a partial solution.

A WEAK LAW FOR WEIGHTED SUMS OF ARRAY OF ROW NA RANDOM VARIABLES

  • Baek, Jong-Il;Liang, Han-Ying;Choi, Jeong-Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.341-349
    • /
    • 2003
  • Let {$x_{nk}\;$\mid$1\;\leq\;k\;\leq\;n,\;n\;\geq\;1$} be an array of random varianbles and $\{a_n$\mid$n\;\geq\;1\}\;and\;\{b_n$\mid$n\;\geq\;1} be a sequence of constants with $a_n\;>\;0,\;b_n\;>\;0,\;n\;\geq\;1. In this paper, for array of row negatively associated(NA) random variables, we establish a general weak law of large numbers (WLLA) of the form (${\sum_{\kappa=1}}^n\;a_{\kappa}X_{n\kappa}\;-\;\nu_{n\kappa})\;/b_n$ converges in probability to zero, as $n\;\rightarrow\;\infty$, where {$\nu_{n\kappa}$\mid$1\;\leq\;\kappa\;\leq\;n,\;n\;\geq\;1$} is a suitable array of constants.

THE WEAK LAW OF LARGE NUMBER FOR NORMED WEIGHTED SUMS OF STOCHASTICALLY DOMINATED AND PAIRWISE NEGATIVELY QUADRANT DEPENDENT RANDOM VARIABLES

  • KIM, TAE-SUNG;CHOI, JEONG-YEOL;KIM, HYUN-CHUL
    • Honam Mathematical Journal
    • /
    • v.21 no.1
    • /
    • pp.149-156
    • /
    • 1999
  • Let $\{X_n,\;n{\geq}1\}$ be a sequence of pairwise negative quadrant dependent (NQD) random variables which are stochastically dominated by X. Let $\{a_n,\;n{\geq}1\}$ and $\{b_n,\;n{\geq}1\}$ be sequences of constants such that $a_n>0$ and $0. In this note a weak law of large number of the form $({\sum}_{j=1}^na_jX_j-{\nu}_n)/b_n\rightarrow\limits^p0$ is established, where $\{{\nu}_n,\;n{\geq}1\}$ is a suitable sequence.

  • PDF

STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Ko, Mi-Hwa;Han, Kwang-Hee;Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1325-1338
    • /
    • 2006
  • For double arrays of constants ${a_{ni},\;1{\leq}i{\leq}k_n,\;n{\geq}1}$ and sequences of negatively orthant dependent random variables ${X_n,\;n{\geq}1}$, the conditions for strong law of large number of ${\sum}^{k_n}_{i=1}a_{ni}X_i$ are given. Both cases $k_n{\uparrow}{\infty}\;and\;k_n={\infty}$ are treated.